Skip to main content
Log in

Phytoplankton biomass in a subtropical estuary: Distribution, size composition, and carbon:Chlorophyll ratios

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The seasonal pattern of phytoplankton biomass (chlorophyll and particulate organic carbon) and the salinity-related pattern of phytoplankton biomass and size composition were determined in Apalachicola Bay, Florida, throughout 2004. Phytoplankton biomass was highest during summer and lowest during winter. During summer, phytoplankton biomass was highest in waters with salinity between about 5 and 23. In waters between 5 and 23, phytoplankton biomass was primarily (> 50%) composed of < 5 μm cells. The results from this study support the idea that a microbial food web characterizes mass and energy flow through the planktonic food web in Apalachicola Bay and other estuaries. During winter, the carbonxhlorophylla ratio averaged 56 ± 60 (standard deviation). During summer, the ratio ranged from 23 to 345, with highest values occurring in waters with salinity between about 8 and 22. The carbonxhlorophylla ratio was positively related to the percent of chlorophyll < 5 μm in size during summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature Cited

  • Agawin, N. S. R., C. M. Duarte, andS. Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production.Limnology and Oceanography 45:591–600.

    CAS  Google Scholar 

  • Arin, L., X. Moran, andM. Estrada. 2002. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): Short term variability related to mesoscale hydrodynamics.Journal of Plankton Research 24:1019–1033.

    Article  CAS  Google Scholar 

  • Banse, K. 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea, p. 409–440.In P. G. Falkowski and A. D. Woodhead (eds.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York.

    Google Scholar 

  • Booth, B., J. Lewin, andJ. R. Postel. 1993. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific.Progress in Oceanography 32:57–99.

    Article  Google Scholar 

  • Boynton, W. R., P. F. Kemp, andC. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production, p. 69–90.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.

    Google Scholar 

  • Calbet, A. 2001. Mesozooplankton grazing effect on primary production: A global comparative analysis in marine systems.Limnology and Oceanography 46:1824–1830.

    Google Scholar 

  • Calbet, A. andM. R. Landry. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems.Limnology and Oceanography 49:51–57.

    CAS  Google Scholar 

  • Chang, J., F. K. Shiah, G. C. Gong, andK. P. Chiang. 2003. Crossshelf variation in carbon-to-chlorophylla ratios in the East China Sea, summer 1998.Deep Sea Research 50:1237–1247.

    Article  CAS  Google Scholar 

  • Chanton, J. andF. G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, U.S.A.Limnology and Oceanography 47:683–697.

    Google Scholar 

  • Cloern, J. E., B. E. Cole, R. L. J. Wong, andA. E. Alpine. 1985. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco bay.Hydrobiologia 129:153–176.

    Article  Google Scholar 

  • Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.

    Article  Google Scholar 

  • Fisher, T. R., L. W. Harding, Jr.,D. W. Stanley, andL. G. Ward. 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries.Estuarine Coastal and Shelf Science 27:61–93.

    Article  CAS  Google Scholar 

  • Froneman, P. W. 2004. Food web dynamics in a temperate temporarily open/closed estuary (South Africa).Estuarine Coastal and Shelf Science 59:87–95.

    Article  CAS  Google Scholar 

  • Garibotti, I. A., M. Vernet, W. A. Kozlowski, andM. E. Ferrario. 2003. Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: A comparison of chemotaxonomic and microscopic analyses.Marine Ecology Progress Series 247:27–42.

    Article  CAS  Google Scholar 

  • Gifford, D. J. andM. Dagg. 1988. Feeding of the estuarine copepodAcartia tonsa Dana: Carnivory vs. herbivory in natural microplankton assemblages.Bulletin of Marine Science 43:458–468.

    Google Scholar 

  • Hobro, R. andE. Willen. 1977. Phytoplankton countings. Intercalibration results and recommendations for routine work.International Review of Hydrobiology 62:805–811.

    Google Scholar 

  • Humborg, C. 1997. Primary productivity regime and nutrient removal in the Danube estuary.Estuarine Coastal and Shelf Science 45:579–589.

    Article  Google Scholar 

  • Iriarte, A. 1993. Size-fractionated chlorophylla biomass and picophytoplankton cell density along a longitudinal axis of a temperate estuary (Southampton Water).Journal of Plankton Research 15:485–500.

    Article  Google Scholar 

  • Iriarte, A., I. Madariaga, M. Revilla, andA. Sarobe. 2003. Shortterm variability in microbial food web dynamics in a shallow tidal estuary.Aquatic Microbial Ecology 31:145–161.

    Article  Google Scholar 

  • Juhl, A. R. andM. C. Murrell. 2005. Interactions between nutrients, phytoplankton growth, and microzooplankton grazing in a Gulf of Mexico estuary.Aquatic Microbial Ecology 38:147–156.

    Article  Google Scholar 

  • Kleppel, G. S. andS. E. Hazzard. 2000. Diet and egg production of the copepodAcartia tonsa in Florida Bay.II. Role of the nutritional environment.Marine Biology 137:111–121.

    Article  Google Scholar 

  • Legendre, L. andF. Rassoulzadegan. 1995. Plankton and nutrient dynamics in marine waters.Ophelia 41:153–172.

    Google Scholar 

  • Liu, H. B. andM. Dagg. 2003. Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River.Marine Ecology Progress Series 258:31–42.

    Article  CAS  Google Scholar 

  • Liu, H. B., M. Dagg, C. J. Wu, andK. P. Chiang. 2005. Mesozooplankton consumption of microplankton in the Mississippi River plume, with special emphasis on planktonic ciliates.Marine Ecology Progress Series 286:133–144.

    Article  Google Scholar 

  • Livingston, R. J. 1984. The ecology of the Apalachicola Bay system an estuarine profile. U.S. Fish and Wildlife Service, FWS/OBS 82/05, Washington, D.C.

    Google Scholar 

  • Lohrenz, S. E., D. G. Redalje, G. L. Fahnenstiel, andG. A. Lang. 1991. Regulation and distribution of primary production in the northern Gulf of Mexico, p. 95–104.In Proceedings of the Nutrient Enhanced Coastal Ocean Productivity workshop. Louisiana Universities Marine Consortium, National Oceanic and Atmospheric Administration, Coastal Ocean Program Office, New Orleans, Louisiana.

    Google Scholar 

  • MacIsaac, E. A. andJ. G. Stockner. 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy, p. 187–197.In P. F. Kemp (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • Menden-Deuer, S. andE. J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton.Limnology and Oceanography 45:569–579.

    CAS  Google Scholar 

  • Moncreiff, C. A. andB. K. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 215:93–106.

    Article  CAS  Google Scholar 

  • Montagnes, D. J. S., J. A. Berges, P. J. Harrison, andF. J. R Taylor. 1994. Estimating carbon, nitrogen, protein, and chlorophylla from volume in marine phytoplankton.Limnology and Oceanography 39:1044–1060.

    CAS  Google Scholar 

  • Mortazavi, B., R. L. Iverson, W. M. Landing, F. G. Lewis, andW. R. Huang. 2000a. Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA.Marine Ecology Progress Series 198:19–31.

    Article  Google Scholar 

  • Mortazavi, B., R. L. Iverson, W. R. Huang, F. G. Lewis, andJ. M. Caffrey. 2000b. Nitrogen budget of Apalachicola Bay, a bar built estuary in the northeastern Gulf of Mexico.Marine Ecology Progress Series 195:1–14.

    Article  CAS  Google Scholar 

  • Murrell, M. C. andJ. M. Caffrey. 2005. High cyanobacterial abundance in three northeastern Gulf of Mexico estuaries.Gulf and Caribbean Research 17:95–106.

    Google Scholar 

  • Murrell, M. C. andE. M. Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria.Journal of Plankton Research 26: 371–382.

    Article  Google Scholar 

  • Ning, X., J. E. Cloern, andB. E. Cole. 2000. Spatial and temporal variability of picocyanobacteriaSynechococcus sp. in San Francisco Bay.Limnology and Oceanography 45:695–702.

    CAS  Google Scholar 

  • Putland, J. N. 2005. Ecology of phytoplankton,Acartia tonsa, and microzooplankton in Apalachicola Bay, Florida. Ph.D. Dissertation, Florida State University, Tallahassee, Florida.

    Google Scholar 

  • Putland, J. N. andR. L. Iverson. 2007. Microzooplankton: major herbivores in an estuarine planktonic food web.Marine Ecology Progress Series 345:63–73.

    Article  CAS  Google Scholar 

  • Putland, J. N. andR. B. Rivkin. 1999. Influence of storage mode and duration on the microscopic enumeration ofSynechococcus from a cold coastal ocean environment.Aquatic Microbial Ecology 17:191–199.

    Article  Google Scholar 

  • Ray, R. T., L. W. Haas, andM. E. Sieracki. 1989. Auto trophic picoplankton dynamics in a Chesapeake Bay sub-estuary.Marine Ecology Progress Series 52:273–285.

    Article  Google Scholar 

  • Revilla, M., A. Ansotegui, A. Iriarte, I. Madariaga, E. Orive, A. Sarobe, andJ. M. Trigueros. 2002. Microplankton metabolism along a trophic gradient in a shallow-temperate estuary.Estuaries 25:6–18.

    Article  Google Scholar 

  • Riegman, R., B. R. Kuipers, A. A. M. Noordeloos, andH. J. Witte. 1993. Size-differential control of phytoplankton and the structure of plankton communities.Netherlands Journal of Sea Research 31:255–265.

    Article  Google Scholar 

  • Ryther, J. H. 1969. Photosynthesis and fish production in the sea.Science 166:72–76.

    Article  CAS  Google Scholar 

  • Sautour, B., L. F. Artigas, D. Delmas, A. Herbland, andP. Laborde. 2000. Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary.Journal of Plankton Research 22:531–552.

    Article  Google Scholar 

  • Strom, S. L., M. A. Brainard, J. L. Holmes, andM. B. Olson. 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters.Marine Biology 138:355–368.

    Article  CAS  Google Scholar 

  • Strom, S. L. andM. W. Strom. 1996. Microplankton growth, grazing, and community structure in the northern Gulf of Mexico.Marine Ecology Progress Series 130:229–240.

    Article  Google Scholar 

  • Sullivan, M. J. andC. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 62: 149–159.

    Article  Google Scholar 

  • Tamigneaux, E., M. Mingelbier, B. Klein, andL. Legendre. 1997. Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment (western Gulf of St. Lawrence, Canada).Marine Ecology Progress Series 146:231–247.

    Article  Google Scholar 

  • Veldhuis, M. J. W. andG. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition.Deep Sea Research 51:507–530.

    Article  CAS  Google Scholar 

  • Verity, P. G. 2002. A decade of change in the Skidaway River Estuary.II. Particulate organic carbon, nitrogen, and chlorophyll.Estuaries 25:961–975.

    Article  CAS  Google Scholar 

  • Welschmeyer, N. 1994. Fluorometric analysis of chlorophylla in the presence of chlorophyllb and pheopigments.Limnology and Oceanography 39:1985–1992.

    Article  CAS  Google Scholar 

  • Wetzel, R. L. andG. E. Likens. 1991. Composition and Biomass of Phytoplankton, Limnological Analysis, 2nd edition. Springer-Verlag, New York.

    Google Scholar 

  • Wienke, S. M. andJ. E. Cloern. 1987. The phytoplankton component of seston in San Francisco bay.Netherlands Journal of Sea Research 21:25–33.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. N. Putland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putland, J.N., Iverson, R.L. Phytoplankton biomass in a subtropical estuary: Distribution, size composition, and carbon:Chlorophyll ratios. Estuaries and Coasts: J ERF 30, 878–885 (2007). https://doi.org/10.1007/BF02841341

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02841341

Keywords

Navigation