Estuaries and Coasts

, Volume 30, Issue 5, pp 878–885 | Cite as

Phytoplankton biomass in a subtropical estuary: Distribution, size composition, and carbon:Chlorophyll ratios

  • J. N. Putland
  • R. L. Iverson


The seasonal pattern of phytoplankton biomass (chlorophyll and particulate organic carbon) and the salinity-related pattern of phytoplankton biomass and size composition were determined in Apalachicola Bay, Florida, throughout 2004. Phytoplankton biomass was highest during summer and lowest during winter. During summer, phytoplankton biomass was highest in waters with salinity between about 5 and 23. In waters between 5 and 23, phytoplankton biomass was primarily (> 50%) composed of < 5 μm cells. The results from this study support the idea that a microbial food web characterizes mass and energy flow through the planktonic food web in Apalachicola Bay and other estuaries. During winter, the carbonxhlorophylla ratio averaged 56 ± 60 (standard deviation). During summer, the ratio ranged from 23 to 345, with highest values occurring in waters with salinity between about 8 and 22. The carbonxhlorophylla ratio was positively related to the percent of chlorophyll < 5 μm in size during summer.


Chlorophyll Phytoplankton Phytoplankton Biomass Particulate Organic Carbon Marine Ecology Progress Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agawin, N. S. R., C. M. Duarte, andS. Agusti. 2000. Nutrient and temperature control of the contribution of picoplankton to phytoplankton biomass and production.Limnology and Oceanography 45:591–600.Google Scholar
  2. Arin, L., X. Moran, andM. Estrada. 2002. Phytoplankton size distribution and growth rates in the Alboran Sea (SW Mediterranean): Short term variability related to mesoscale hydrodynamics.Journal of Plankton Research 24:1019–1033.CrossRefGoogle Scholar
  3. Banse, K. 1992. Grazing, temporal changes of phytoplankton concentrations, and the microbial loop in the open sea, p. 409–440.In P. G. Falkowski and A. D. Woodhead (eds.), Primary Productivity and Biogeochemical Cycles in the Sea. Plenum Press, New York.Google Scholar
  4. Booth, B., J. Lewin, andJ. R. Postel. 1993. Temporal variation in the structure of autotrophic and heterotrophic communities in the subarctic Pacific.Progress in Oceanography 32:57–99.CrossRefGoogle Scholar
  5. Boynton, W. R., P. F. Kemp, andC. W. Keefe. 1982. A comparative analysis of nutrients and other factors influencing estuarine phytoplankton production, p. 69–90.In V. S. Kennedy (ed.), Estuarine Comparisons. Academic Press, New York.Google Scholar
  6. Calbet, A. 2001. Mesozooplankton grazing effect on primary production: A global comparative analysis in marine systems.Limnology and Oceanography 46:1824–1830.Google Scholar
  7. Calbet, A. andM. R. Landry. 2004. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems.Limnology and Oceanography 49:51–57.Google Scholar
  8. Chang, J., F. K. Shiah, G. C. Gong, andK. P. Chiang. 2003. Crossshelf variation in carbon-to-chlorophylla ratios in the East China Sea, summer 1998.Deep Sea Research 50:1237–1247.CrossRefGoogle Scholar
  9. Chanton, J. andF. G. Lewis. 2002. Examination of coupling between primary and secondary production in a river-dominated estuary: Apalachicola Bay, Florida, U.S.A.Limnology and Oceanography 47:683–697.Google Scholar
  10. Cloern, J. E., B. E. Cole, R. L. J. Wong, andA. E. Alpine. 1985. Temporal dynamics of estuarine phytoplankton: A case study of San Francisco bay.Hydrobiologia 129:153–176.CrossRefGoogle Scholar
  11. Deegan, L. A. andR. H. Garritt. 1997. Evidence for spatial variability in estuarine food webs.Marine Ecology Progress Series 147:31–47.CrossRefGoogle Scholar
  12. Fisher, T. R., L. W. Harding, Jr.,D. W. Stanley, andL. G. Ward. 1988. Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries.Estuarine Coastal and Shelf Science 27:61–93.CrossRefGoogle Scholar
  13. Froneman, P. W. 2004. Food web dynamics in a temperate temporarily open/closed estuary (South Africa).Estuarine Coastal and Shelf Science 59:87–95.CrossRefGoogle Scholar
  14. Garibotti, I. A., M. Vernet, W. A. Kozlowski, andM. E. Ferrario. 2003. Composition and biomass of phytoplankton assemblages in coastal Antarctic waters: A comparison of chemotaxonomic and microscopic analyses.Marine Ecology Progress Series 247:27–42.CrossRefGoogle Scholar
  15. Gifford, D. J. andM. Dagg. 1988. Feeding of the estuarine copepodAcartia tonsa Dana: Carnivory vs. herbivory in natural microplankton assemblages.Bulletin of Marine Science 43:458–468.Google Scholar
  16. Hobro, R. andE. Willen. 1977. Phytoplankton countings. Intercalibration results and recommendations for routine work.International Review of Hydrobiology 62:805–811.Google Scholar
  17. Humborg, C. 1997. Primary productivity regime and nutrient removal in the Danube estuary.Estuarine Coastal and Shelf Science 45:579–589.CrossRefGoogle Scholar
  18. Iriarte, A. 1993. Size-fractionated chlorophylla biomass and picophytoplankton cell density along a longitudinal axis of a temperate estuary (Southampton Water).Journal of Plankton Research 15:485–500.CrossRefGoogle Scholar
  19. Iriarte, A., I. Madariaga, M. Revilla, andA. Sarobe. 2003. Shortterm variability in microbial food web dynamics in a shallow tidal estuary.Aquatic Microbial Ecology 31:145–161.CrossRefGoogle Scholar
  20. Juhl, A. R. andM. C. Murrell. 2005. Interactions between nutrients, phytoplankton growth, and microzooplankton grazing in a Gulf of Mexico estuary.Aquatic Microbial Ecology 38:147–156.CrossRefGoogle Scholar
  21. Kleppel, G. S. andS. E. Hazzard. 2000. Diet and egg production of the copepodAcartia tonsa in Florida Bay.II. Role of the nutritional environment.Marine Biology 137:111–121.CrossRefGoogle Scholar
  22. Legendre, L. andF. Rassoulzadegan. 1995. Plankton and nutrient dynamics in marine waters.Ophelia 41:153–172.Google Scholar
  23. Liu, H. B. andM. Dagg. 2003. Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River.Marine Ecology Progress Series 258:31–42.CrossRefGoogle Scholar
  24. Liu, H. B., M. Dagg, C. J. Wu, andK. P. Chiang. 2005. Mesozooplankton consumption of microplankton in the Mississippi River plume, with special emphasis on planktonic ciliates.Marine Ecology Progress Series 286:133–144.CrossRefGoogle Scholar
  25. Livingston, R. J. 1984. The ecology of the Apalachicola Bay system an estuarine profile. U.S. Fish and Wildlife Service, FWS/OBS 82/05, Washington, D.C.Google Scholar
  26. Lohrenz, S. E., D. G. Redalje, G. L. Fahnenstiel, andG. A. Lang. 1991. Regulation and distribution of primary production in the northern Gulf of Mexico, p. 95–104.In Proceedings of the Nutrient Enhanced Coastal Ocean Productivity workshop. Louisiana Universities Marine Consortium, National Oceanic and Atmospheric Administration, Coastal Ocean Program Office, New Orleans, Louisiana.Google Scholar
  27. MacIsaac, E. A. andJ. G. Stockner. 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy, p. 187–197.In P. F. Kemp (ed.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, Florida.Google Scholar
  28. Menden-Deuer, S. andE. J. Lessard. 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton.Limnology and Oceanography 45:569–579.Google Scholar
  29. Moncreiff, C. A. andB. K. Sullivan. 2001. Trophic importance of epiphytic algae in subtropical seagrass beds: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 215:93–106.CrossRefGoogle Scholar
  30. Montagnes, D. J. S., J. A. Berges, P. J. Harrison, andF. J. R Taylor. 1994. Estimating carbon, nitrogen, protein, and chlorophylla from volume in marine phytoplankton.Limnology and Oceanography 39:1044–1060.Google Scholar
  31. Mortazavi, B., R. L. Iverson, W. M. Landing, F. G. Lewis, andW. R. Huang. 2000a. Control of phytoplankton production and biomass in a river-dominated estuary: Apalachicola Bay, Florida, USA.Marine Ecology Progress Series 198:19–31.CrossRefGoogle Scholar
  32. Mortazavi, B., R. L. Iverson, W. R. Huang, F. G. Lewis, andJ. M. Caffrey. 2000b. Nitrogen budget of Apalachicola Bay, a bar built estuary in the northeastern Gulf of Mexico.Marine Ecology Progress Series 195:1–14.CrossRefGoogle Scholar
  33. Murrell, M. C. andJ. M. Caffrey. 2005. High cyanobacterial abundance in three northeastern Gulf of Mexico estuaries.Gulf and Caribbean Research 17:95–106.Google Scholar
  34. Murrell, M. C. andE. M. Lores. 2004. Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: Importance of cyanobacteria.Journal of Plankton Research 26: 371–382.CrossRefGoogle Scholar
  35. Ning, X., J. E. Cloern, andB. E. Cole. 2000. Spatial and temporal variability of picocyanobacteriaSynechococcus sp. in San Francisco Bay.Limnology and Oceanography 45:695–702.Google Scholar
  36. Putland, J. N. 2005. Ecology of phytoplankton,Acartia tonsa, and microzooplankton in Apalachicola Bay, Florida. Ph.D. Dissertation, Florida State University, Tallahassee, Florida.Google Scholar
  37. Putland, J. N. andR. L. Iverson. 2007. Microzooplankton: major herbivores in an estuarine planktonic food web.Marine Ecology Progress Series 345:63–73.CrossRefGoogle Scholar
  38. Putland, J. N. andR. B. Rivkin. 1999. Influence of storage mode and duration on the microscopic enumeration ofSynechococcus from a cold coastal ocean environment.Aquatic Microbial Ecology 17:191–199.CrossRefGoogle Scholar
  39. Ray, R. T., L. W. Haas, andM. E. Sieracki. 1989. Auto trophic picoplankton dynamics in a Chesapeake Bay sub-estuary.Marine Ecology Progress Series 52:273–285.CrossRefGoogle Scholar
  40. Revilla, M., A. Ansotegui, A. Iriarte, I. Madariaga, E. Orive, A. Sarobe, andJ. M. Trigueros. 2002. Microplankton metabolism along a trophic gradient in a shallow-temperate estuary.Estuaries 25:6–18.CrossRefGoogle Scholar
  41. Riegman, R., B. R. Kuipers, A. A. M. Noordeloos, andH. J. Witte. 1993. Size-differential control of phytoplankton and the structure of plankton communities.Netherlands Journal of Sea Research 31:255–265.CrossRefGoogle Scholar
  42. Ryther, J. H. 1969. Photosynthesis and fish production in the sea.Science 166:72–76.CrossRefGoogle Scholar
  43. Sautour, B., L. F. Artigas, D. Delmas, A. Herbland, andP. Laborde. 2000. Grazing impact of micro- and mesozooplankton during a spring situation in coastal waters off the Gironde estuary.Journal of Plankton Research 22:531–552.CrossRefGoogle Scholar
  44. Strom, S. L., M. A. Brainard, J. L. Holmes, andM. B. Olson. 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific waters.Marine Biology 138:355–368.CrossRefGoogle Scholar
  45. Strom, S. L. andM. W. Strom. 1996. Microplankton growth, grazing, and community structure in the northern Gulf of Mexico.Marine Ecology Progress Series 130:229–240.CrossRefGoogle Scholar
  46. Sullivan, M. J. andC. A. Moncreiff. 1990. Edaphic algae are an important component of salt marsh food-webs: Evidence from multiple stable isotope analyses.Marine Ecology Progress Series 62: 149–159.CrossRefGoogle Scholar
  47. Tamigneaux, E., M. Mingelbier, B. Klein, andL. Legendre. 1997. Grazing by protists and seasonal changes in the size structure of protozooplankton and phytoplankton in a temperate nearshore environment (western Gulf of St. Lawrence, Canada).Marine Ecology Progress Series 146:231–247.CrossRefGoogle Scholar
  48. Veldhuis, M. J. W. andG. W. Kraay. 2004. Phytoplankton in the subtropical Atlantic Ocean: Towards a better assessment of biomass and composition.Deep Sea Research 51:507–530.CrossRefGoogle Scholar
  49. Verity, P. G. 2002. A decade of change in the Skidaway River Estuary.II. Particulate organic carbon, nitrogen, and chlorophyll.Estuaries 25:961–975.CrossRefGoogle Scholar
  50. Welschmeyer, N. 1994. Fluorometric analysis of chlorophylla in the presence of chlorophyllb and pheopigments.Limnology and Oceanography 39:1985–1992.CrossRefGoogle Scholar
  51. Wetzel, R. L. andG. E. Likens. 1991. Composition and Biomass of Phytoplankton, Limnological Analysis, 2nd edition. Springer-Verlag, New York.Google Scholar
  52. Wienke, S. M. andJ. E. Cloern. 1987. The phytoplankton component of seston in San Francisco bay.Netherlands Journal of Sea Research 21:25–33.CrossRefGoogle Scholar

Copyright information

© Estuarine Research Federation 2007

Authors and Affiliations

  1. 1.Department of OceanographyFlorida State UniversityTallahassee

Personalised recommendations