Synthesis and characterization of Li-doped LaMnO3 CMR materials



A series of bulk polycrystalline La1−xLixMnO3 samples with x ranging from 0.1 to 0.5 was prepared by sol-gel method. X-ray diffraction patterns show that the crystal structures are single rhombohedral perovskite for the x≤0.3 sample and the impurity appears when x>0.3. Under the same synthesized conditions, the higher Li content samples display a higher content of liquid phase content and larger mean grain sizes, which leads to the increases of the effect of the grain boundaries. The experimental results show that the change of the ferromagnetic transition temperature and the resistivity can attribute to the effect of the grain boundary and the connectivity of the inter grains as well as the ratio of Mn3+ to Mn4+.

Key words

sol-gel method doped content grain boundary magnetotransport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O Yu Gorbenko, O V Melnikov. Solid Solutions La1−x Ag, MnO3+δ: Evidence for Silver Doping, Structure and Properties.Material Science and Engineering B, 2005, 116 (1):64–70CrossRefGoogle Scholar
  2. [2]
    J M D Coey, M Viret. Mixed-valence Manganites.Advances in Physics, 1999, 48(2):167–293CrossRefGoogle Scholar
  3. [3]
    E L Nagaev. Colossal-magnetoresistance Materials: Manganites and Conventional Ferromagnetic Semiconductors.Phys. Rep., 2001, 346:387–531CrossRefGoogle Scholar
  4. [4]
    J Barratt, M R Lees, G Balakrishnan, D Mck Paul. Insulator-metal Transitions in PrCaMnO3 Induced by a Magnetic Field.Appl. Phys. Lett., 1996, 68(3):424–426CrossRefGoogle Scholar
  5. [5]
    C Shivakumara, G N Subbanna, N P Lalla, M S Hegde. Na Substitution for La- and Mn-Sites in LaMnO3 from Alkali Halide Fluxes: Low Temperature, Structure and Properties.Mater. Res. Bull., 2004, 39(1):71–81CrossRefGoogle Scholar
  6. [6]
    T Tao, Q Q Cao, K M Gu, H Y Xu, S Y Zhang and Y W Du. Giant Magnetoresistance of the La1−xAgxMnO3 Polycrystalline Imhomogeneous Granular System.Appl. Phys. Lett., 2000, 77(5):723–725CrossRefGoogle Scholar
  7. [7]
    Monica Popa, Masato Kakihana. Synthesis of Lanthanum Cobaltite (LaCoO3) by the Polymerizable Complex Route.Solid State Ionics, 2002, 151(1–4):251–257CrossRefGoogle Scholar
  8. [8]
    S L Ye, WH Song, J M Dai, S G Wang, K Y Wang. Effect of Li Substitution on Crystal Structure and Magnetoresistance of LaMnO3.J. Appl. Phys., 2000, 88(10):5915–5919CrossRefGoogle Scholar
  9. [9]
    Yonglai Fu. Grain-boundary effects on Electrical Resistivity and Ferromagnetic Transition Temperature of La0.8 Ca0.2 MnO3.Appl. Phys. Lett., 2000, 77(1):118–120CrossRefGoogle Scholar
  10. [10]
    Lev P Gorkov, Vladimir Z Kresin. Mixed-valence Manganites: Fundamentals and Main PropertiesPhys. Rep., 2004, 400:149–208CrossRefGoogle Scholar
  11. [11]
    B Vetruyen, A Rulmont, R Cloots. Synthesis of CMR Manganate Compounds: the Consequences of a Choice of the Precursor Method.Mater. Lett., 2002, 57(3):598–603CrossRefGoogle Scholar
  12. [12]
    R Muller, T Eick, H Steinmetz, E Steinbeib. LaSr-manganate Powders and Bulk Material by Crystallization of a Glass.J. Eur. Ceram. Soc., 2001, 21(3) 1941–1944CrossRefGoogle Scholar
  13. [13]
    B K Roul, D R Sahu, S Mohanty, A K Pradhan. Effect of High Temperature Sintering Schedule for Enhanced CMR Properties of LaCaMnO lose to Room Temperature.Mater. Chem. Phys., 2001, 67(1–3):267–271CrossRefGoogle Scholar
  14. [14]
    A K Pradhan, B K Roul, J G Wen. Enhanced Room-temperature Magnetoresistance in Partially Melted La0.67Ca0.33MnO3 Manganites.Appl. Phys. Lett., 2000, 76(6):763–765CrossRefGoogle Scholar

Copyright information

© Editorial Office of Journal of Wuhan University of Technology-Materials Science Edition 2005

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina
  2. 2.School of Materials Science and EngineeringWuhan University of TechnologyWuhanChina

Personalised recommendations