Chinese Journal of Geochemistry

, Volume 24, Issue 2, pp 101–107 | Cite as

Influences of ore formation on biomarkers in the Kupferschiefer from the Lubin mine, Poland

  • Sun Yuzhuang
  • Chen Jianping
  • Lin Mingyue
  • Meng Zhiqiang
  • Zhang Hongjian


Molecular biomarkers are the important maturity parameters for sedimentary organic matter. They have also been widely used for determining the maturity of organic matter in ore deposits. However, during the study of organic matter in the Kupferschiefer from the Lubin mine, it had been found that the biomarkers were influenced by sulfide formation. In order to probe into the degree of influence on biomarkers, seven samples collected from a Kupferschiefer section from the Lubin mine were analyzed by various geochemical methods. The results indicated that in the samples with higher copper contents, the values of biomarkers are lower than in the samples with lower copper contents. In highly mineralized samples, hydrogen donation for thermochemical sulfate reduction (TSR) occurred in alkylated phenanthrenes and naphthalenes, leading to the decrease of 12 biomarker parameters during the Kupferschiefer mineralization.

Key words

Kupferschiefer biomarker methylphenanthrene index ore formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bechtel A. and Püttmann W. (1991) The origin of the Kupferschiefertype mineralization in the Richelsdorf Hills, Germany, as deduced from stable isotope and organic geochemical studies [J].Chemical Geology. 91, 1–18.CrossRefGoogle Scholar
  2. Bechtel A. and Püttmann W. (1992) Combined isotopic and biomarker investigations of temperature and facies-dependent variations in the Kupferschiefer of the Lower Rhine Basin, northwestern Germany[J].Chemical Geology. 102, 23–40.CrossRefGoogle Scholar
  3. Brown A. C. (1978) Stratiform copper deposits evidence for their postsedimentary origin [J].Minerals Sci. Enging. 10, 172–181.Google Scholar
  4. Haranczyk C. (1986) Zechstein copper-bearing shales in Poland. Lagoonal environments and sapropel model of genesis. InGeology and Metallogeny of Copper Deposits (eds. Friedrich et al.) [C]. pp. 461 -476, Springer-Verlag, Heidelberg.Google Scholar
  5. Jowett E. C. (1986) Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegendes brines during Triassic rifting [J].Economic Geology. 81, 1823 -1837.Google Scholar
  6. Kruge M. A. (2000) Determination of thermal maturity and organic matter type by principal components analysis of the distributions of polycyclic aromatic compounds [J].International Journal of Coal Geology. 43, 27–51.CrossRefGoogle Scholar
  7. Kucha H. and Pawlikowski M. (1986) Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland [J].Mineral Deposita. 21, 70–80.CrossRefGoogle Scholar
  8. Machel H. G. (1989) Relationship between sulfate reduction and oxidation of organic compounds to carbonate diagenesis, hydrocarbon accumulations, salt domes, and metal sulfide deposits [J].Carbonates and Evaporites. 4, 137–151.CrossRefGoogle Scholar
  9. Machel H. G., Krause H. R. and Sassen R. (1995) Products and distinguishing criteria of bacterial and thermochemical sulfate reduction [J].Applied Geochemistry. 10, 373–389.CrossRefGoogle Scholar
  10. Marowsky G. (1969) Schwefel-, Kohlenstoff- und Sauerstoff-Isotopenuntersuchungen am Kupferschiefer als Beitrag zur genetischen Deutung [J].Contrib. Miner. Petrol. 22, 290–334.CrossRefGoogle Scholar
  11. Orr W. L. (1977) Geologic and geochemical controls on the distribution of hydrogen sulfide in natural gas. InAdvances in Organic Geochemistry 1975 (eds. R. Campos and J. Goni) [M]. pp. 571–597, Madrid, Enadisma.Google Scholar
  12. Oszczepalski S. (1989) Kupferschiefer in Southwestern Poland: Sedimentary environments, metal zoning, and ore controls. InSediment Hosted Stratiform Copper Deposits (eds. Boyle et al.) [C]. pp. 571–600. Geological Association of Canada Special Paper, 36.Google Scholar
  13. Paul J. (1982) Zur Randund Schwellenfazies des Kupferschiefers [J].Zeit Deutscher Geologischen Geselschaften. 133, 571 -605.Google Scholar
  14. Powell T. G. and Macqueen R. W. (1984) Precipitation of sulfide ores and organic matter: Sulfate reactions at Pine Point [J].Science.224, 63–66.CrossRefGoogle Scholar
  15. Püttmann W., Hagemann H. W., Merz C., and Speczik S. (1988) Influence of organic material on mineralization processes in the Permian Kupferschiefer Formation, Poland [J].Organic Geochemistry.13, 357–363.CrossRefGoogle Scholar
  16. Püttmann W., Merz C., and Speczik S. (1989) The secondary oxidation of organic material and its influence on Kupferschiefer mineralization of Southwest Poland [J].Applied Geochemistry. 4, 151 -161.CrossRefGoogle Scholar
  17. Püttmann W., Heppenheimer H., and Diedel R. (1990) Accumulation of base metals in the Permian Kupferschiefer: A result of post-depositional redox reactions [J].Organic Geochemistry.16, 1145 -1156.CrossRefGoogle Scholar
  18. Radke M., Weite D. H., and Wilsch H. (1986) Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type [J].Organic Geochemistry.10, 51 -63.CrossRefGoogle Scholar
  19. Radke M., Willsch H., Leythaeuser D., and Teichmüller M. (1982) Aromatic components of coal: Relation of distribution pattern to rank [J].Geochimica et Cosmochimica Acta. 46, 1831–1848.CrossRefGoogle Scholar
  20. Rentzsch J. (1974) The Kupferschiefer in comparison with the deposits of the Zambian Copperbelt. InCentenaire de la Société Geologique de Belgique, Gisements Stratiforms et Provinces Cupriféres (ed. P. BARTHOLOMé) [C]. p.395–418, Liége.Google Scholar
  21. Rentzsch J. (1991) Die Rote-Fäule-Fazies als wichtigster erzkontrollierender Faktor der Vererzung des Typs Kupferschiefer [J].Zbl.Geol. Palaeont. Teil. 1, 945–956.Google Scholar
  22. Schmidt F. P. and Friedrich G. (1988) Geological setting and genesis of Kupferschiefer mineralization in West Germany. InBase Metal Sulfide Deposits in Sedimentary and Volcanic Environments (SG A Spec. Publ. 5, eds. G. H. Friedrich and P. M. Herzig) [M] pp. 25 -59. Berlin, Heidelberg.Google Scholar
  23. Sun Y. Z. and Püettmann W. (2001) Oxidation of organic matter in the transition zone of the Zechstein Kupferschiefer from the Sangerhausen Basin, Germany [J].Energy and Fuels.15, 817 -829.CrossRefGoogle Scholar
  24. Sun Y. Z. and Püttmann W. (2000) The role of organic matter during metal accumulation in Permian Kupferschiefer from the Sangerhausen Basin, Germany [J].Org. Geochem. 31, 1143–1161.CrossRefGoogle Scholar
  25. Sun Y. Z. and Püttmann W. (2003) The role of organic matter during metal enrichment of permian Kupferschiefer in the Rudna Mine, Southwest Poland [J].Chinese Journal of Geochemistry.22, 1–11.CrossRefGoogle Scholar
  26. Sun Y. Z. (1996)Geochemical Evidence for Multi-stage Base Metal Enrichment in Kupferschiefer [D]. pp. 210. Doctoral Thesis, RWTH Aachen, Germany.Google Scholar
  27. Sun Y. Z., Püttmann W. and Speczik S. (1995) Differences in the depositional environment of Basal Zechstein in Southwest Poland: Implication for base metal mineralization [J].Organic Geochemistry.23, 819–835.CrossRefGoogle Scholar
  28. Vaughan D. J., Sweeney M., Friedrich G., Diedel R., and Haranczyk C. (1989) The Kupferschiefer; An overview with the appraisal of different types of mineralization [J].Econ. Geol. 84, 1003 -1027.CrossRefGoogle Scholar
  29. Wedepohl K. H. (1964) Untersuchungen am Kupferschiefer in NWDeutschland, Ein Beitrag zur Deutung der Genese bituminöser Sedimente [J].Geochim. Cosmochim. Acta. 28, 305–364.CrossRefGoogle Scholar
  30. Wedepohl K. H. (1971) “Kupferschiefer” as a prototype of syngenetic sedimentary ore deposits [J].Soc. Mining Geol. Japan (IMA-IA-GOD Spec. Issue).3, 263 -273.Google Scholar

Copyright information

© Institute of Geochemistry, Chinese Academy of Sciences 2005

Authors and Affiliations

  • Sun Yuzhuang
    • 1
    • 2
  • Chen Jianping
    • 3
  • Lin Mingyue
    • 1
  • Meng Zhiqiang
    • 1
  • Zhang Hongjian
    • 4
  1. 1.Hebei University of EngineeringHandanChina
  2. 2.Open Laboratory of Organic Geochemistry, Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
  3. 3.Key Laboratory for Petroleum GeochemistryCNPCBeijingChina
  4. 4.China University of Mining and TechnologyXuzhouChina

Personalised recommendations