Advertisement

A novel splice mutation of HERG in a Chinese family with long QT syndrome

  • Shang Yun-peng
  • Xie Xu-dong
  • Wang Xing-xiang
  • Chen Jun-zhu
  • Zhu Jian-hua
  • Tao Qian-min
  • Zheng Liang-rong
Article

Abstract

Congenital long QT syndrome (LQTS) is a genetically heterogeneous disease in which six ion-channel genes have been identified. The phenotype-genotype relationships of the HERG (human ether-a-go-go-related gene) mutations are not fully understood. The objective of this study is to identify the underlying genetic basis of a Chinese family with LQTS and to characterize the clinical manifestations properties of the mutation. Single strand conformation polymorphism (SSCP) analyses were conducted on DNA fragments amplified by polymerase chain reaction from five LQT-related genes. Aberrant conformers were analyzed by DNA sequencing. A novel splice mutation in C-terminus of HERG was identified in this Chinese LQTS family, leading to the deletion of 11-bp at the acceptor splice site of Exon9 [Exon9 IVS del (−12→−2)]. The, mutation might affect, through deficient splicing, the putative cyclic nucleotide binding domain (CNBD) of the HERG K+ channel. This mutation resulted in a mildly affected phenotype. Only the proband had a history of syncopes, while the other three individuals with long QT interval had no symptoms. Two other mutation carriers displayed normal phenotype. No sudden death occurred in the family. The 4 affected individuals and the two silent mutation carriers were all heterozygous for the mutation. It is the first splice mutation of HERG reported in Chinese LQTS families. Clinical data suggest that the CNBD mutation may be less malignant than mutations occurring in the pore region and be partially dominant over wild-type function.

Key words

HERG gene Long QT syndrome Cardiac arrhythmia C-terminus Acceptor splice site mutation 

Document code

CLC number

R541.7 R596.2 

References

  1. Berthet, M., Denjoy, I., Donger, C., Demay, L., Hammoude, H., Klug, D., Schulze-Bahr, E., Richard, P., Funke, H., Schwartz, K.,et al., 1999. C-terminal HERG mutations: The role of hypokalemia and a KCNQ1-associated mutation in cardiac event occurrence.Circulation,99(11): 1464–1470.PubMedGoogle Scholar
  2. Chen, J., Zou, A., Splawski, I., Keating, M.T., Sanguinetti, M.C., 1999. Long QT syndrome-associated mutations in the Per-Arnt-Sim (PAS) domain of HERG potassium channels accelerate channel deactivation.J Biol Chem,274(15):10113–10118.PubMedCrossRefGoogle Scholar
  3. Cui, J., Kagan, A., Qin, D., Mathews, J., Melman, Y.F., McDonald, T.V., 2001. Analysis of the cyclic nucleotide binding domain of the HERG potassium channel and interactions with KCNE2.J Biol Chem,276(20): 17244–17251.PubMedCrossRefGoogle Scholar
  4. Curran, M.E., Splawski, I., Timothy, K.W., Vincent, G.M., Green, E.D., Keating, M.T., 1995. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome.Cell,80(5):795–803.PubMedCrossRefGoogle Scholar
  5. Johnson, W.H. Jr., Yang, P., Yang, T., Lau, Y.R., Mostella, B.A., Wolff, D.J., Roden, D.M., Benson, D.W., 2003. Clinical, genetic, and biophysical characterization of a homozygous HERG mutation causing severe neonatal long QT syndrome.Pediatr Res,53(5):744–748.PubMedCrossRefGoogle Scholar
  6. Keating, M.T., Sanguinetti, M.C., 2001. Molecular and cellular mechanisms of cardiac arrhythmias.Cell,104(4): 569–580.PubMedCrossRefGoogle Scholar
  7. Krawczak, M., Reiss, J., Cooper, D.N., 1992. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: Causes and consequences.Hum Genet,90(1–2):41–54.PubMedGoogle Scholar
  8. Lees-Miller, J.P., Duan, Y., Teng, G.Q., Thorstad, K., Duff, H.J., 2000. Novel gain-of-function mechanism in K(+) channel-related long-QT syndrome: Altered gating and selectivity in the HERG1 N629D mutant.Circ Res,86(5):507–513.PubMedGoogle Scholar
  9. Nakajima, T., Furukawa, T., Hirano, Y., Tanaka, T., Sakurada, H., Takahashi, T., Nagai, R., Itoh, T., Katayama, Y., Nakamura, Y.,et al., 1999. Voltage-shift of the current activation in HERG S4 mutation (R534C) in LQT2.Cardiovasc Res,44(2):283–293.PubMedCrossRefGoogle Scholar
  10. Neyroud, N., Tesson, F., Denjoy, I., Leibovici, M., Donger, C., Barhanin, J., Faure, S., Gary, F., Coumel, P., Petit, C.,et al., 1997. A novel mutation in the potassium channel gene KVLQT1 causes the jervell and Lange-Nielsen cardioauditory syndrome.Nat Genet,15(2):186–189.PubMedCrossRefGoogle Scholar
  11. Plaster, N.M., Tawil, R., Tristani-Firouzi, M., Canun, S., Bendahhou, S., Tsunoda, A., Donaldson, M.R., Iannaccone, S.T., Brunt, E., Barohn, R.,et al., 2001. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome.Cell,105(4): 511–519.PubMedCrossRefGoogle Scholar
  12. Priori, S.G., Barhanin, J., Hauer, R.N., Haverkamp, W., Jongsma, H.J., Kleber, A.G., McKenna, W.J., Roden, D.M., Rudy, Y., Schwartz, K.,et al., 1999a. Genetic and molecular basis of cardiac arrhythmias: Impact on, clinical management parts I and II.Circulation,99(5):518–528.PubMedGoogle Scholar
  13. Priori, S.G., Napolitano, C., Schwartz, P.J., 1999b. Low penetrance in the long-QT syndrome: Clinical impact.Circulation,99(4):529–533.PubMedGoogle Scholar
  14. Reese, M.G., Eeckman, F.H., Kulp, D., Haussler, D., 1997. Improved Splice Site Detection in Genie.J Comput Biol,4(3):311–323.PubMedCrossRefGoogle Scholar
  15. Roden, D.M., Spooner, P.M., 1999. Inherited long QT syndromes: A paradigm for understanding arrhythmogenesis.J Cardiovasc Electrophysiol,10(12):1664–1683.PubMedCrossRefGoogle Scholar
  16. Sanguinetti, M.C., Curran, M.E., Spector, P.S., Keating, M.T., 1996. Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia.Proc Natl Acad Sci USA,93(5):2208–2212.PubMedCrossRefGoogle Scholar
  17. Schwartz, P.J., Moss, A.J., Vincent, G.M., Crampton, R.S., 1993. Diagnostic criteria for the long QT syndrome.Circulation,88(2):782–784.PubMedGoogle Scholar
  18. Splawski, I., Shen, J., Timothy, K.W., Vincent, G.M., Lehmann, M.H., Keating, M.T., 1998. Genomic structure of three long QT syndrome genes: KVLQT1, HERG, and KCNE1.Genomics,51(1):86–97.PubMedCrossRefGoogle Scholar
  19. Splawski, I., Shen, J., Timothy, K.W., Lehmann, M.H., Priori, S., Robinson, J.L., Moss, A.J., Schwartz, P.J., Towbin, J.A., Vincent, G.M.,et al., 2000. Spectrum of mutations in long-QT syndrome genes: KVLQT1-HERG, SCN5A, KCNE1, and KCNE2.Circulation,102(10):1178–1185.PubMedGoogle Scholar
  20. Wainger, B.J., DeGennaro, M., Santoro, B., Siegelbaum, S.A., Tibbs, G.R., 2001. Molecular mechanism of cAMP modulation of HCN pacemaker channels.Nature,411(6839):805–810.PubMedCrossRefGoogle Scholar
  21. Wang, Q., Li, Z., Shen, J., Keating, M.T., 1996. Genomic organization of the human SCN5A gene encoding the cardiac sodium channel.Genomics,34(1):9–16.PubMedCrossRefGoogle Scholar
  22. Warmke, J.W., Ganetzky, B., 1994. A family of potassium channel genes related to eag in Drosophila and mammals.Proc Natl Acad Sci USA,91(8):3438–3442.PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press 2005

Authors and Affiliations

  • Shang Yun-peng
    • 1
  • Xie Xu-dong
    • 1
  • Wang Xing-xiang
    • 1
  • Chen Jun-zhu
    • 1
  • Zhu Jian-hua
    • 1
  • Tao Qian-min
    • 1
  • Zheng Liang-rong
    • 1
  1. 1.Department of Cardiovascular Diseases, First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina

Personalised recommendations