Advertisement

Journal of Zhejiang University Science B

, Volume 6, Issue 9, pp 853–858 | Cite as

Application of new tissue microarrayer-ZM-1 without recipient paraffin block

  • Meng Pan-qing
  • Hou Gang
  • Zhou Gui-ying
  • Peng Jia-ping
  • Dong Qi
  • Zheng Shu
Science Letters

Abstract

The ZM-1 tissue microarrayer designed by our groups is manufactured in stainless steel and brass and contains many features that make TMA (tissue microarray) paraffin blocks construction faster and more convenient. By means of ZM-1 tissue microarrayer, biopsy needles are used to punch the donor tissue specimens respectively. All the needles with the punched specimen cylinders are arrayed into the array-board, with an array of small holes dug to fit the needles. All the specimen cylinders arraying and the TMA paraffin block shaping are finished in only one step so that the specimen cylinders and the paraffin of the TMA block can very easily be incorporated and the recipient paraffin blocks need not be made in advance, and the paraffin used is the same as that for conventional pathology purpose. ZM-1 tissue microarrayer is easy to be manufactured, does not need any precision location system, and so is much cheaper than the currently used instrument. Our method's relatively cheap and simple ZM-1 tissue microarrayer technique of constructing TMA paraffin block may facilitate popularization of the TMA technology.

Key words

Tissue microarray (TMA) Construction technique Method 

Document code

CLC number

R735.3 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bubendorf, L., 2001. High-throughput microarray technologies: From genomics to clinics.Eur. Urol.,40(2): 231–238.PubMedCrossRefGoogle Scholar
  2. Chung, G.G., Provost, E., Kielhorn, E.P., 2001. Tissue microarray analysis of beta-catenin in colorectal cancer shows nuclear phospho-beta-catenin is associated with a better prognosis.Clin. Cancer Res.,7(12):4013–4020.PubMedGoogle Scholar
  3. Collins, F.S., Patrinos, A., Jordan, E., Chakravarti, A., Gesteland, R., Walters, L., 1998. New goals for the U.S. Human Genome Project: 1998–2003.Science,282(5389):682–689.PubMedCrossRefGoogle Scholar
  4. Frantz, G.D., Pham, T.Q., Peale, F.V.Jr., Hillan, K.J., 2001. Detection of novel gene expression in paraffin-embedded tissues by isotopic in situ hybridization in tissue microarrays.J. Pathol.,195(1):87–96.PubMedCrossRefGoogle Scholar
  5. Fuller, C.E., Wang, H., Zhang, W., Fuller, G.N., Perry, A., 2002. High-throughput molecular profiling of high-grade astrocytomas: The utility of fluorescence in situ hybridization on tissue microarrays (TMA-FISH).J. Neuropathol. Exp. Neurol.,61(12):1078–1084.PubMedGoogle Scholar
  6. Gulmann, C., Grace, A., Leader, M., Butler, D., Patchett, S., Kay, E., 2003a. Adenomatous polyposis coli gene, beta-catenin, and E-cadherin expression in proximal and distal gastric cancers and precursor lesions: An immunohistochemical study using tissue microarrays.Appl. Immunohistochem. Mol. Morphol.,11(3):230–237.PubMedGoogle Scholar
  7. Gulmann, C., Butler, D., Kay, E., Grace, A., Leader, M., 2003b. Biopsy of a biopsy: Validation of immunoprofiling in gastric cancer biopsy tissue microarrays.Histopathology,42(1):70–76.PubMedCrossRefGoogle Scholar
  8. Jubb, A.M., Landon, T.H., Burwick, J., Pham, T.Q., Frantz, G.D., Cairns, B., Quirke, P., Peale, F.V., Hillan, K.J., 2003. Quantitative analysis of colorectal tissue microarrays by immunofluorescence and in situ hybridization.J. Pathol.,200(5):577–588.PubMedCrossRefGoogle Scholar
  9. Kallioniemi, O.P., Wagner, U., Kononen, J., Sauter, G., 2001. Tissue microarray technology for high-throughput molecular profiling of cancer.Hum. Mol. Genet.,10(7):657–662.PubMedCrossRefGoogle Scholar
  10. Kononen, J., Bubendorf, L., Kallioniemi, A., Barlund, M., Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M.J., Sauter, G., Kallioniemi, O.P., 1998. Tissue microarrays for high-throughput molecular profiling of tumor specimens.Nat. Med.,4(7):844–847.PubMedCrossRefGoogle Scholar
  11. Mousses, S., Kallioniemi, A., Kauraniemi, P., Elkahloun, A., Kallioniemi, O.P., 2002. Clinical and functional target validation using tissue and cell microarrays.Curr. Opin. Chem. Biol.,6(1):97–101.PubMedCrossRefGoogle Scholar
  12. Rimm, D.L., Camp, R.L., Charette, L.A., Costa, J., Olsen, D.A., Reiss, M., 2001. Tissue microarray: A new technology for amplification of tissue resources.Cancer J.,7(1):24–31.PubMedGoogle Scholar
  13. Sheehan, K.M., Cahill, R.A., McGreal, G., Steele, C., Byrne, M.F., Kirwan, W.O., Kay, E.W., Fitzgerald, D.J., Redmond, H.P., Murray, F.E., 2004. Cyclooxygenase-2 expression in primary human colorectal cancers and bone marrow micrometastases.Dig. Liver Dis.,36(6):392–397.PubMedGoogle Scholar
  14. Simon, R., Sauter, G., 2002. Tissue microarrays for miniaturized high-throughput molecular profiling of tumors.Exp. Hematol.,30(12):1365–1372.PubMedCrossRefGoogle Scholar
  15. Sinicrope, F.A., Gill, S., 2004. Role of cyclooxygenase-2 in colorectal cancer.Cancer Metastasis Rev.,23(1–2):63–75.PubMedCrossRefGoogle Scholar
  16. Watson, S.J., Akil, H., 1999. Gene chips and arrays revealed: A primer on their power and their uses.Biol. Psychiatry,45(5):533–543.PubMedCrossRefGoogle Scholar

Copyright information

© Zhejiang University Press 2005

Authors and Affiliations

  • Meng Pan-qing
    • 1
    • 2
  • Hou Gang
    • 2
  • Zhou Gui-ying
    • 3
  • Peng Jia-ping
    • 1
  • Dong Qi
    • 1
  • Zheng Shu
    • 1
  1. 1.Cancer Institute, Second Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouChina
  2. 2.Tai'an Central Hospital of ShandongTai'anChina
  3. 3.Department of Mechanical EngineeringAdvanced Technology School of Tai'anTai'anChina

Personalised recommendations