Advertisement

Treatment of Be+ (1 s − 1)2S Auger resonance with different decouplings of the dilated electron propagator

  • Milan N. Medikeri
  • Manoj K. Mishra
Article

Abstract

The diagonal 2ph-TDA and quasiparticle decouplings of the dilated electron propagator (based on an underlying bi-variational SCF) are utilized to calculate energy and width of the Be+(1s −1)2S Auger resonance for the first time. Comparison with experimental and other theoretical results reveals that the renormalized infinite order diagonal 2ph-TDA decoupling seems to offer a less balanced approach to the treatment of resonances than the second-order decoupling. The diagonal quasiparticle approximation to the self energy is seen to offer an effective and economic alternative to the non-diagonal propagator calculations.

Keywords

Auger resonance dilated electron propagator decoupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bisgard P, Bruch R, Dahl P, Fatrup B and Rodbro M 1978Phys. Scr. 17 49CrossRefGoogle Scholar
  2. Cederbaum L S 1990Int. J. Quantum Chem. S24 393, and references thereinCrossRefGoogle Scholar
  3. Cederbaum L S and Domcke W 1977Adv. Chem. Phys. 36 205CrossRefGoogle Scholar
  4. Cederbaum L S, Domcke W, Schirmer J and von Niessen W 1980Physica Scripta 21 481CrossRefGoogle Scholar
  5. Cederbaum L S, Domcke W, Schirmer J, von Niessen W, Diercksen G H F and Kraemer W P 1978J. Chem. Phys. 69 1591CrossRefGoogle Scholar
  6. Das A and Melissinos A C 1986Quantum mechanics (New York: Gordon and Breach) p. 534Google Scholar
  7. Donnelly R A 1982aJ. Chem. Phys. 76 5414CrossRefGoogle Scholar
  8. Donnelly R A 1982bInt. J. Quantum Chem. S16 653Google Scholar
  9. Donnelly R A 1985Int. J. Quantum Chem. S19 337Google Scholar
  10. Donnelly R A 1986J. Chem. Phys. 84 6200CrossRefGoogle Scholar
  11. Donnelly R A and Simons J 1980J. Chem. Phys. 73 2858CrossRefGoogle Scholar
  12. Froelich P and Löwdin P O 1983J. Math. Phys. 24 89Google Scholar
  13. Herman M F, Freed K F and Yeager D L 1981Adv. Chem. Phys. 48 1CrossRefGoogle Scholar
  14. Holneicher G, Ecker F and Cederbaum L S 1972 InElectron spectroscopy (ed.) D A Shirley (Amsterdam: North-Holland)Google Scholar
  15. Ho Y K 1983Phys. Rep. 99 2CrossRefGoogle Scholar
  16. Jörgensen P and Simons J 1981 InSecond quantization based methods in quantum chemistry (New York: Academic Press)Google Scholar
  17. Junker B R 1982Adv. At. Mol. Phys. 18 207CrossRefGoogle Scholar
  18. Kelly H P 1974Phys. Rev. A9 1582Google Scholar
  19. Kurtz H A and Öhrn Y 1978J. Chem. Phys. 69 1162CrossRefGoogle Scholar
  20. Linderberg J and Öhrn Y 1973 InPropagators in quantum chemistry (New York: Academic Press)Google Scholar
  21. Löwdin P O, Froelich P and Mishra M 1989aInt. J. Quantum Chem. 2 867CrossRefGoogle Scholar
  22. Löwdin P O, Froelich P and Mishra M 1989bAdv. Quantum Chem. 20 185Google Scholar
  23. Medikeri M N and Mishra M K 1993aChem. Phys. Lett. 211 607CrossRefGoogle Scholar
  24. Medikeri M N, Nair J and Mishra M K 1993J. Chem. Phys. 99 1869CrossRefGoogle Scholar
  25. Medikeri M N, Nair J and Mishra M K 1994J. Chem. Phys. 100 2044CrossRefGoogle Scholar
  26. Meyer H D 1989Phys. Rev. A40 5605Google Scholar
  27. Meyer H D, Pal S and Riss U V 1992Phys. Rev. A46 186Google Scholar
  28. Mishra M 1989 InLecture notes in chemistry (ed.) D Mukherjee (Berlin: Springer-Verlag) vol. 50, p. 223, and references thereinGoogle Scholar
  29. Mishra M 1994 (to be published)Google Scholar
  30. Mishra M, Froelich P and Öhrn Y 1981aChem. Phys. Lett. 81 339CrossRefGoogle Scholar
  31. Mishra M, Goscinski O and Öhrn Y 1983bJ. Chem. Phys. 79 5494CrossRefGoogle Scholar
  32. Mishra M, Goscinski O and Öhrn Y 1983cJ. Chem. Phys. 79 5505CrossRefGoogle Scholar
  33. Mishra M, Öhrn Y and Froelich P 1981bPhys. Lett. A81 4Google Scholar
  34. Mishra M, Kurtz H A, Goscinski O and Öhrn Y 1983aJ. Chem. Phys. 79 1896CrossRefGoogle Scholar
  35. Öhrn Y and Born G 1981Adv. Quantum Chem. 13 1CrossRefGoogle Scholar
  36. Ortiz J V 1990Int. J. Quantum Chem.: Quantum Chem. Symp. S24 585Google Scholar
  37. Ortiz J V 1992Chem. Phys. Lett. 199 530, and references thereinCrossRefGoogle Scholar
  38. Ortiz J V and Öhrn Y 1980J. Chem. Phys. 72 5744CrossRefGoogle Scholar
  39. Palmquist M, Altick P L, Richter J, Winkler P and Yaris R 1981Phys. Rev. A23 1795Google Scholar
  40. Reinhardt W P 1982Annu. Rev. Phys. Chem. 33 223CrossRefGoogle Scholar
  41. Rodbro M, Bruch R and Bisgard P 1979J. Phys. B12 2413Google Scholar
  42. Simons J 1977Annu. Rev. Phys. Chem. 28 15CrossRefGoogle Scholar
  43. Simons J 1978 InTheoretical chemistry: Advances and perspectives (ed.) H Eyring (New York: Academic Press) vol. 3Google Scholar
  44. von Niessen W, Schirmer J and Cederbaum L S 1984Comput. Phys. Rep. 1 57CrossRefGoogle Scholar
  45. Winkler P 1979Z. Phys. A291 199Google Scholar
  46. Winkler P, Yaris R and Lovett R 1981Phys. Rev. A23 1787Google Scholar

Copyright information

© Indian Academy of Sciences 1994

Authors and Affiliations

  • Milan N. Medikeri
    • 1
  • Manoj K. Mishra
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyPowai, BombayIndia

Personalised recommendations