Effect of cooperativity on the O-H stretching force constant in associated water species

  • M. C. Shivaglal
  • R. Brakaspathy
  • Surjit Singh
Physical and Theoretical


CNDO/force calculations have been employed to calculate the O-H stretching force constants for various structures of associated water species such as water-dimethylether, water-acetonitrile, water-lithium fluoride, linear and cyclic water polymers. The variation in the O-H stretching force constant in Am… O-H… Dn species where Am and Dn represent, respectively,m number of electron-acceptor andn number of electron-donor molecules, is explained on the basis of the cooperativity effect. With increasing electron-acceptor power of A and electron-donor power of D, the hydrogen-bonded O-H stretching force constant is significantly reduced. The results obtained in these studies are in general agreement with experimental observations reported earlier.


CNDO/force force constant associated water species cooperativity effect 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annamalai A and Singh S 1982aJ. Mol. Struct. Theochem. 87 169CrossRefGoogle Scholar
  2. Annamalai A and Singh S 1982bJ. Chem. Phys. 77 860CrossRefGoogle Scholar
  3. Annamalai A and Singh S 1982cIndian J. Chem. A21 949Google Scholar
  4. Annamalai A and Singh S 1983aIndian J. Pure Appl. Phys. 21 82Google Scholar
  5. Annamalai A and Singh S 1983bCan. J. Chem. 61 263CrossRefGoogle Scholar
  6. Bowers A (ed.) 1979Gas phase ion chemistry (New York: Academic Press) vol. 2Google Scholar
  7. Brakaspathy R, Jothi A and Singh S 1985Pramana- J. Phys. 25 201Google Scholar
  8. Brakaspathy R and Singh S 1985J. Mol. Struct. Theochem. 133 83CrossRefGoogle Scholar
  9. Brakaspathy R and Singh S 1986aProc. Indian Acad. Sci. (Chem. Sci.) 96 285Google Scholar
  10. Brakaspathy R and Singh S 1986bChem. Phys. Lett. 31 394CrossRefGoogle Scholar
  11. Brakaspathy R and Singh S 1987aProc. Indian Acad. Sci. (Chem. Sci.) 99 253Google Scholar
  12. Brakaspathy R and Singh S 1987bPramana- J. Phys. 29 491Google Scholar
  13. Clementie E, Kolos W, Lie G C and Ranghino G 1980Int. J. Quantum Chem. 17 377CrossRefGoogle Scholar
  14. Couzi M, Le Calve J, van Huong P and Lascombe J 1970J. Mol. Struct. 5 363CrossRefGoogle Scholar
  15. Del Bene J E and Pople J A 1970J. Chem. Phys. 52 4858CrossRefGoogle Scholar
  16. Del Bene J E and Pople J A 1971J. Chem. Phys. 55 4633CrossRefGoogle Scholar
  17. Del Bene J E and Pople J A 1973J. Chem. Phys. 58 3605CrossRefGoogle Scholar
  18. Falk M, Flakus H T and Boyd R J 1986Spectrochim. Acta A42 175Google Scholar
  19. Flory P J 1969Statistical mechanics of chain mechanics (New York: Inter Science)Google Scholar
  20. Frank H S and Wen W Y 1957Discus. Faraday Soc. 24 133CrossRefGoogle Scholar
  21. Gaw J F, Yamaguchi Y, Vincent M A and Schaefer H F 1984J. Am. Chem. Soc. 106 3133CrossRefGoogle Scholar
  22. Hankins D, Moskowitz J W and Stillinger F H 1970J. Chem. Phys. 53 4544CrossRefGoogle Scholar
  23. Hankins D, Moskowitz J W and Stillinger F H 1973J. Chem. Phys. 59 995CrossRefGoogle Scholar
  24. Hinton J F and Harpool R D 1977J. Am. Chem. Soc. 99 349CrossRefGoogle Scholar
  25. Johansson A, Kollman P, Rothenberg S and McKelvey J 1974J. Am. Chem. Soc. 96 3794CrossRefGoogle Scholar
  26. Jothi A, Shanmugam G, Annamalai A and Singh S 1982Pramana- J. Phys. 19 413CrossRefGoogle Scholar
  27. Kanakavel M, Chandrasekhar J, Subramanian S and Singh S 1976Theor. Chim. Acta 43 185CrossRefGoogle Scholar
  28. Karpfen A, Ladik J, Russegger P, Schuster P and Suhai S 1974Theor. Chim. Acta 34 115CrossRefGoogle Scholar
  29. Kistenmacher H, Lie G C, Popkie H and Clementi E 1974J. Chem. Phys. 61 546CrossRefGoogle Scholar
  30. Kleeberg H 1986J. Solution Chem. 15 169CrossRefGoogle Scholar
  31. Kleeberg H (ed.) 1987 inInteraction of water in ionic and organic hydrates (Heidelberg: Springer Verlag)Google Scholar
  32. Kleeberg H, Heinje G and Luck W A P 1986aJ. Phys. Chem. 90 4427CrossRefGoogle Scholar
  33. Kleeberg H, Klein D and Luck W A P 1986bJ. Phys. Chem. 91 1573Google Scholar
  34. Kocak O, Kleeberg H and Luck W A P 1987 inInteraction of water in ionic and organic hydrates (ed.) H Kleeberg(Heidelberg: Springer Verlag)Google Scholar
  35. Kurnig I J, Szczesniak M M and Scheiner S 1986J. Phys. Chem. 90 4253CrossRefGoogle Scholar
  36. Lentz B R and Scheraga H A 1973J. Chem. Phys. 58 5296CrossRefGoogle Scholar
  37. Lentz B R and Scheraga H A 1974J. Chem. Phys. 61 3493CrossRefGoogle Scholar
  38. Luck W A P and Schrems O 1982Horizons in hydrogen bond research, Leuven, August 22–27Google Scholar
  39. Newton M D and Ehrenson S 1971J. Am. Chem. Soc. 93 4971CrossRefGoogle Scholar
  40. Scheiner S 1983Aggregation Processes in Solutions (eds) Wyn-Jones and J Gormally (Amsterdam: Elsevier) p. 402Google Scholar
  41. Schrems O 1981 PhD thesis, Univ. Marburg, Marburg, FRGGoogle Scholar
  42. Scheiner S and Nagle J F 1983J. Phys. Chem. 87 4267CrossRefGoogle Scholar
  43. Schuster P 1976The hydrogen bond-recent developments in theory and experiments (eds) P Schuster, G Zundel and C Sandorfy (Amsterdam: North Holland) p. 25Google Scholar
  44. Sheidan R P, Lee R H, Peters N and Allen L C 1979Biopolymers 18 2451CrossRefGoogle Scholar
  45. Symons M C R 1981Acc. Chem. Res. 14 179CrossRefGoogle Scholar
  46. Symons M C R, Fletcher N J and Thompson V 1979Chem. Phys. Lett. 60 323CrossRefGoogle Scholar
  47. Symons M C R, Thomas V K, Fletcher N J and Pay N G 1981J. Chem. Soc., Faraday Trans. 1 77 1899CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1988

Authors and Affiliations

  • M. C. Shivaglal
    • 1
  • R. Brakaspathy
    • 1
  • Surjit Singh
    • 1
  1. 1.Department of ChemistryIndian Institute of TechnologyMadrasIndia

Personalised recommendations