Advertisement

Glass transition. A new approach based on cluster model of glasses

  • K. J. Rao
Solid Statet Chemistry and Surface Chemistry
  • 40 Downloads

Abstract

The structure of real glasses has been considered to be microheterogeneous, composed of clusters and connective tissue. Particles in the cluster are assumed to be highly correlated in positions. The tissue is considered to have a truly amorphous structure with its particles vibrating in highly anharmonic potentials. Glass transition is recognized as corresponding to the melting of clusters. A simple mathematical model has been developed which accounts for various known features associated with glass transition, such as range of glass transition temperature,T g, variation ofT g with pressure, etc. Expressions for configurational thermodynamic properties and transport properties of glass forming systems are derived from the model. The relevence and limitations of the model are also discussed.

Keywords

Glass transitions cluster model thermodynamic properties transport properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam G and Gibbs J H 1965J. Chem. Phys. 43 139CrossRefGoogle Scholar
  2. Angell C A and Moynihan C T 1969Molten salts (ed.) G Mamantov (New York: Marcel Dekker)Google Scholar
  3. Angell C A and Rao K J 1972J. Chem. Phys. 57 470CrossRefGoogle Scholar
  4. Angell C A and Sichina W 1976Ann. N.Y. Acad. Sci. 279 53CrossRefGoogle Scholar
  5. Boehm L, Ingram M D and Angell C A 1981J. Non. Cryst. Solids 44 305CrossRefGoogle Scholar
  6. Branda F, Buri A, Caferra D and Marotta L 1983J. Non Cryst. Solids 54 193CrossRefGoogle Scholar
  7. Bursill L A, Thomas J M and Rao K J 1981Nature (London) 289 157CrossRefGoogle Scholar
  8. Burton J J 1970J. Chem. Phys. 52 345CrossRefGoogle Scholar
  9. Burton J J 1973aJ. Chem. Phys. 56 3133CrossRefGoogle Scholar
  10. Burton J J 1973bJ. Chem. Soc. Faraday II 69 540CrossRefGoogle Scholar
  11. Button D P, Tandon R, King C, Veléz M H, Tuller H L and Uhlmann D R 1982J. Non Cryst. Solids 49 129CrossRefGoogle Scholar
  12. Cohen M H and Turnbull D 1959J. Chem. Phys. 31 1164CrossRefGoogle Scholar
  13. Cohen M H and Grest G S 1980Phys. Rev. B20 1077Google Scholar
  14. Cohen M H and Grest G S 1981Adv. Chem. Phys. 48 455CrossRefGoogle Scholar
  15. Exarhos G J, Miller P J and Risen Jr W H 1974J. Chem. Phys. 60 4145CrossRefGoogle Scholar
  16. Exarhos G J and Risen Jr W M 1971Chem. Phys. Lett. 10 484CrossRefGoogle Scholar
  17. Flinn P A, Zabransky B J and Ruby S L 1976J. Phys. C6 37 739Google Scholar
  18. Gaskell P H, Smith D J, Catto C J D and Cleaver J R A 1979Nature (London) 281 465CrossRefGoogle Scholar
  19. Gibbs J H and DiMarzio E A 1958J. Chem. Phys. 28 373CrossRefGoogle Scholar
  20. Gibbs J H 1963Modern aspects of vitreous state (ed.) J D Mackenzie (London: Butterworths)Google Scholar
  21. Goldstein M 1963J. Chem. Phys. 39 3369CrossRefGoogle Scholar
  22. Goldstein M1969J. Chem. Phys. 51 3728CrossRefGoogle Scholar
  23. Goldstein M 1976aJ. Chem. Phys. 64 4767CrossRefGoogle Scholar
  24. Goldstein M 1976bPhase transitions (ed.) L E Cross (New York: Pergamon Press)Google Scholar
  25. Goldstein M 1977J. Chem. Phys. 67 2246CrossRefGoogle Scholar
  26. Haddad J and Goldstein M 1978J. Non Cryst. Solids 30 1CrossRefGoogle Scholar
  27. Hemlata S, Parthasarathy G, Lakshmikumar S T and Rao K J 1983Philos. Mag. 47 291Google Scholar
  28. Hoare M R 1976Ann. N.Y. Acad. Sci. 279 314CrossRefGoogle Scholar
  29. Hoare M R and Barker J 1976The structure of non crystalline materials (ed.) P H Gaskell (London: Taylor and Francis)Google Scholar
  30. Kauzmann W 1948Chem. Rev. 43 219CrossRefGoogle Scholar
  31. Kingery W D, Bowen H K and Uhlmann D R 1976Introduction to ceramics (New York: John Wiley)Google Scholar
  32. MacCall D W 1973J. Chem. Phys. 47 530Google Scholar
  33. Moynihan C T, Macedo P B, Montrose C J, Gupta P K, DeBolt M A, Dill J F, Dom B E, Drake P W, Easteal A J, Elterman P B, Moeller R P, Sasabe H and Wilder J A, 1976Ann. N.Y. Acad. Sci. 279 15CrossRefGoogle Scholar
  34. Owen A E 1973Electronic and structural properties of amorphous semiconductors (eds) P G Lecomber and J Mort (New York: Academic Press)Google Scholar
  35. Parthasarathy R, Rao K J and Rao C N R 1981J. Phys. Chem. 85 3085CrossRefGoogle Scholar
  36. Parthasarathy R, Rao K J and Rao C N R 1984Chem. Soc. Rev. Google Scholar
  37. Phillips J C 1982Solid State Phys. 37 93CrossRefGoogle Scholar
  38. Rao C N R and Rao K J 1979Phase transitions in solids (New York: McGraw Hill)Google Scholar
  39. Rao K J 1979Bull. Mater. Sci. 1 181CrossRefGoogle Scholar
  40. Rao K J and Rao C N R 1982Mater. Res. Bull. 17 1337CrossRefGoogle Scholar
  41. Rao K J and Angell C A 1971Amorphous materials (eds) R W Douglas and B E Ellis (New York: Wiley)Google Scholar
  42. Rao K J, Helphrey D and Angell C A 1973Phys. Chem. Glasses 14 26Google Scholar
  43. Rice S A 1975Topics in current chemistry 60 409Google Scholar
  44. Rubinstein M 1976Phys. Rev. B14 2778Google Scholar
  45. Ruby S L, Zabransky B J and Flinn P A 1976J. Phys. C6 37 745Google Scholar
  46. Sakka S and Mackenzie J D 1971J. Non. Cryst. Solids 6 145CrossRefGoogle Scholar
  47. Schmidt V, Hopte J and Scholz R 1980Ultramicroscopy 5 223CrossRefGoogle Scholar
  48. Sundar H G K, Parthasarathy R and Rao K J 1982A37 191Google Scholar
  49. Turnbull D 1969Contemp. Phys. 10 473CrossRefGoogle Scholar
  50. Turnbull D and Cohen M H 1961J. Chem. Phys. 34 1120CrossRefGoogle Scholar
  51. Turnbull D and Cohen M H 197052 3038Google Scholar
  52. Zarzycki J and Mezard R 1962Phys. Chem. Glasses 3 163Google Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • K. J. Rao
    • 1
  1. 1.Solid State and Structural Chemistry unitIndian Institute of ScienceBangaloreIndia

Personalised recommendations