A model for solar quiet day variation at low latitude from past observations using singular spectrum analysis

  • S. K. Bhardwaj
  • G. K. Rangarajan


Singular spectrum isolates significant principal components in a time series from the embedded noise. This tool-kit is used to reconstruct trend-free individual time series, formed by restricting the mean monthly hourly values of geomagnetic field to one hour at a time at a low latitude station Alibag (dipole latitude 9.5°N). Each reconstructed component is extrapolated over the next 12 values using an autoregressive model based on Burg’s maximum entropy algorithm. Details of a numerical approach to increase the reliability of extrapolation are highlighted. The extrapolated reconstructed components are then combined to generate predicted monthly values for each hour. The mean diurnal variation for any month obtained from the extrapolated individual hourly time series compares favorably with the observations. This approach to Sq(H) modelling incorporating both long and short term variations will be beneficial in the derivation of Dst index.


Solar quiet day variation low latitude singular spectrum analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alldredge L R 1976 Effects of solar activity on annual means of geomagnetic components;J. Geophys. Res. 81 2990–2996CrossRefGoogle Scholar
  2. Arora B R, Rao D R K and Sastri N S 1980 Latitudinal variations of geomagnetic solar and lunar tides in the Indian region;Proc. Indian Acad. Sci. (Earth Planet. Sci.) 89 333–346Google Scholar
  3. Bhargava B N 1972 Semiannual and annual modulation of the magnetic field;Planet. Space Sci. 20 423–427CrossRefGoogle Scholar
  4. Burg J P 1968 Maximum entropy spectral analysis paper presented at 37th Annual meeting of SEG-Oklahama (also in Modern Spectrum Analysis, (ed) D G Childers, New York: IEEE Press, pp. 34–88, 1978)Google Scholar
  5. Butcher E C 1989 Abnormal Sq behavior;Pure and applied Geophysics (PAGEOPH) 131 463–483CrossRefGoogle Scholar
  6. Golovkov V P, Papitashvili N Ye, Tyupkin Yu S and Kharin Ye P 1978 Separation of geomagnetic field variations into quiet and disturbed components by the method of natural orthogonal components;Geomag. Aero. 18 342–344Google Scholar
  7. Gonzalez A L O and Gonzalez W D 1987 Periodicities in the interplanetary magnetic field polarity;J. Geophys. Res. 92 4357–4375CrossRefGoogle Scholar
  8. Gonzalez A L C, Gonzalez W D and Dutra S L G 1993 Periodic variations in the geomagnetic activity: A study based on the Ap index;J. Geophys. Res. 98 9215–9231CrossRefGoogle Scholar
  9. Haines G V and Torta J M 1994 Determination of equivalent current sources from spherical cap harmonic models of geomagnetic field variations;Geophys. J. Int. 118 499–514CrossRefGoogle Scholar
  10. Kendall M G 1948The advanced theory of statistics, Vol. II (London: Charells Griffin & Co. ltd.)Google Scholar
  11. Keppenne C L and Ghil M 1992 Adaptive filtering and prediction of the southern oscillation index;J. Geophys. Res. 97 20449–20454Google Scholar
  12. Marple Jr S L 1987 Digital spectral analysis with applications (New Jersey: Prentice Hall) pp 232–236Google Scholar
  13. Matsushita S 1967 Solar quiet and lunar daily variation fields, in Physics of Geomagnetic Phenomena, Vol. 1, (ed) S Matsushita and W H Campbell (New York: Academic Press) pp 301–424Google Scholar
  14. Mayaud P N 1980 Derivation, meaning and use of geomagnetic indices (AGU monograph 22, Washington) pp 154Google Scholar
  15. Olsen N 1994 A 27-month periodicity in the low latitude geomagnetic field and its connection to the stratospheric QBO;Geophys. Res. Lett. 21 1125–1128CrossRefGoogle Scholar
  16. Paularena K I, Szabo A and Richardson J D 1995 Coincident 1.3-year periodicities in the Ap geomagnetic index and the solar wind;Geophys. Res. Lett. 22 3001–3004CrossRefGoogle Scholar
  17. Penland C, Ghil M and Weickmann K M 1991 Adaptive filtering and maximum entropy spectra with application to changes in atmospheric angular momentum;J. Geophys. Res. 96 22659–22671CrossRefGoogle Scholar
  18. Price A T and Wilkins G A 1963 New methods for the analysis of geomagnetic fields and their application to the Sq field of 1932–3;Phil. Trans. R. Soc. London A256 31–98CrossRefGoogle Scholar
  19. Rangarajan G K 1989 Indices of geomagnetic activity, in Geomagnetism, Vol. 3, (ed) J A Jacob (London: Academic Press) pp 323–352Google Scholar
  20. Rangarajan G K 1985 Quasi-biennial oscillation in geomagnetic disturbance field;Proc. Indian Acad. Sci (Earth Planet. Sci.) 94 29–34Google Scholar
  21. Rangarajan G K, Veliz O and Arora B R 1996 Geomagnetic secular variation and field oscillation of external origin at Huancayo, Peru, Brazilian;J. Geophys. 14(1) 29–40Google Scholar
  22. Rangarajan G K and Araki T 1997 Multiple time scales in the fluctuations of the equatorial Dst index through singular spectrum analysis;J. Geomag. Geoelectr. 49 3–20Google Scholar
  23. Rangarajan G K and Iyemori T 1997 Time variation of geomagnetic activity indices Kp and Ap: An update;Ann. Geophys. 15 1271–1290CrossRefGoogle Scholar
  24. Rastogi R G and Iyer K N 1976 Quiet day variation of geomagnetic H-field at low latitudes;J. Geomag. Geoelectr. 28 461–479Google Scholar
  25. Schlapp D M, Butcher E C and Mann R J 1988 Days of small range in Sq(H) on quiet days at Hartland;J. Geophys. 95 633–639CrossRefGoogle Scholar
  26. Schmitz D R and Cain J C 1983 Geomagnetic spherical harmonic analysis 1. Techniques;J. Geophys. Res. 88 1222–1228CrossRefGoogle Scholar
  27. Sugiura M and Kamei T 1991 Equatorial Dst Index 1957–1986. IAGA Bull. No. 40, 246 pp ISGI Publ. Office, FranceGoogle Scholar
  28. Sugiura M and Kamei T 1997 Personal communicationGoogle Scholar
  29. Sugiura M and Poros D J 1977 Solar-generated quasi-biennial geomagnetic variation;J. Geophys. Res. 82 5621–5628CrossRefGoogle Scholar
  30. Ulrych T J and Bishop T N 1975 Maximum entropy spectral analysis and autoregressive decomposition;Rev. Geophys. Space. Phys. 13 183–200CrossRefGoogle Scholar
  31. Vautard R, Yiou P and Ghil M 1992 Singular spectrum analysis: A toolkit for short, noisy chaotic signals;Physica D58 95–126Google Scholar
  32. Yacob A and Rao D R K 1966 Solar cycle and annual variation of Sq(H) at Alibag;J. Atmos. Terr. Phys. 28 351–360CrossRefGoogle Scholar
  33. Yacob A and Sen A K 1969 Solar cycle periodicity in secular variation of H at Alibag;Indian J. Meteorol. Geophys. 20 283–290Google Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • S. K. Bhardwaj
    • 1
  • G. K. Rangarajan
    • 1
  1. 1.Indian Institute of GeomagnetismColaba, MumbaiIndia

Personalised recommendations