Use of semiempirical molecular orbital calculations for the evaluation of force fields

  • A. Annamalai
  • M. Kanakavel
  • Surjit Singh
Physical and Teoretical Chemistry


Various methods, employing molecular orbital calculations of varying approximations, for evaluation of force fields of polyatomic molecules have been reviewed. Applications ofcndo/force method for the force field calculations are specially dealt with in detail because of its ease of operation and being economically more viable in terms of computer time. The calculated C=O stretching force constants for a series of organic molecules are shown to have linear relationship with substituent constants.


Force fields vibrational analysis molecular orbital calculations cndo/force 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Annamalai A, Kanakavel M and Singh S 1978Proc. Indian Acad. Sci. A87 337Google Scholar
  2. Annamalai A 1981 Ph.D. thesis, IIT, MadrasGoogle Scholar
  3. Annamalai A and Singh S 1982aJ. Chem. Phys. 77 860CrossRefGoogle Scholar
  4. Annamalai A and Singh S 1982bIndian J. Chem. A21 949Google Scholar
  5. Annamalai A and Singh S 1982cJ. Mol. Struct. (Theochem) 87 169CrossRefGoogle Scholar
  6. Annamalai A and Singh S 1983aIndian J. Pure Appl. Phys. 21 82Google Scholar
  7. Annamalai A and Singh S 1983bCan. J. Chem. 61 263CrossRefGoogle Scholar
  8. Baron J and Kolos W 1962J. Mol. Spectrosc. 8 121CrossRefGoogle Scholar
  9. Berthier G, Pullman B and Pontis J 1952J. Chim. Phys. 49 367Google Scholar
  10. Bishop D M and Randic M 1966J. Chem. Phys. 44 2480CrossRefGoogle Scholar
  11. Bishop D M and Mancias A 1969J. Chem. Phys. 51 4997CrossRefGoogle Scholar
  12. Bishop D M and Mancias A 1970J. Chem. Phys. 53 3515CrossRefGoogle Scholar
  13. Bloemer L W and Brunner L B 1972J. Mol. Spectrosc. 43 452CrossRefGoogle Scholar
  14. Brakaspathy R, Jothi A and Singh S 1984Bull. Chem. Soc. Jpn (submitted)Google Scholar
  15. Bratoz S 1958Colloq Int. Centre Nat Res. Sci. (Paris) 82 257Google Scholar
  16. Bratoz S and Besnainou S 1959J. Chim. Phys. 56 555Google Scholar
  17. Carpenter J H 1974J. Mol. Spectrosc. 50 1812CrossRefGoogle Scholar
  18. Colthup N B and Orloff M K 1974Spectrochim. Acta A30 425Google Scholar
  19. Cook D 1958J. Am. Chem. Soc. 80 49CrossRefGoogle Scholar
  20. Cook D 1961Can. J. Chem. 39 31CrossRefGoogle Scholar
  21. Duncan J L 1973Chem. Phys. Lett. 23 597CrossRefGoogle Scholar
  22. Evans J C and Overend J 1963Spectrochim. Acta 19 701CrossRefGoogle Scholar
  23. Exner O 1972Advances in linear free energy relationship (eds) N B Chapman and J Shorter (London: Plenum) p. 28Google Scholar
  24. Forsen S 1962Spectrochim. Acta 18 595CrossRefGoogle Scholar
  25. Gerrat J and Mills I M 1968J. Chem. Phys. 49 1718Google Scholar
  26. Gleghorn J T and McConkey F W 1975J. Mol. Struct. 29 133CrossRefGoogle Scholar
  27. Goodisman J 1963J. Chem. Phys. 39 2397CrossRefGoogle Scholar
  28. Hammett L P 1940Physical organic chemistry (New York: McGraw Hill)Google Scholar
  29. Hartwell E J, Richards R E and Thompson H W 1948J. Chem. Soc. 1436Google Scholar
  30. Heath W and Linnett J W 1945Trans. Faraday Soc. 44 556CrossRefGoogle Scholar
  31. Hine J 1962Physical organic chemistry (New York: McGraw Hill) Chap. 4Google Scholar
  32. Jones R W, Forbes W F and Miller W A 1957Can. J. Chem. 35 504CrossRefGoogle Scholar
  33. Jothi A, Shanmugam G, Annamalai A and Singh S 1982Pramana 19 413Google Scholar
  34. Jothi A 1983 Ph.D thesis, Madras UniversityGoogle Scholar
  35. Kagarise R E 1955J. Am. Chem. Soc. 77 1377CrossRefGoogle Scholar
  36. Kanakavel M, Chandrasekhar J, Subramanian S and Surjit Singh 1976Theor. Chim. Acta 43 185CrossRefGoogle Scholar
  37. Kanakavel M 1976 Ph.D. Thesis, HT, MadrasGoogle Scholar
  38. Katritzky A R and Topson R D 1972Advances in linear free energy relationships (eds) N B Chapman and J Shorter (London: Plenum)Google Scholar
  39. Klopmann G and O’Leary B 1970Topics Curr. Chem. 15 447Google Scholar
  40. Kozumutza K and Pulay P 1975Theor. Chim. Acta 37 67CrossRefGoogle Scholar
  41. Kozumutza K 1976Acta. Sci. Hung. 40 245Google Scholar
  42. Leies G 1963J. Chem. Phys. 39 1137CrossRefGoogle Scholar
  43. Liler M 1967Spectrochim. Acta A23 139Google Scholar
  44. Mallinson P D, McKean D C, Holloway D C and Oxfon I A 1975Spectrochim. Acta A31 143Google Scholar
  45. Marmer E B, Pouchan C, Dargelos A and Chaillet M 1979J. Mol. Struct. 57 189CrossRefGoogle Scholar
  46. McLean A D 1964J. Chem. Phys. 40 243CrossRefGoogle Scholar
  47. Mills I M 1963aSpectrochim. Acta 19 1585CrossRefGoogle Scholar
  48. Mills I M 1963bIR spectroscopy and molecular structure (ed) M Davies (Amsterdam: Elsevier) p. 166Google Scholar
  49. Murthy A S N and Ranganathan S 1982aJ. Mol. Struct. (Theochem) 90 219CrossRefGoogle Scholar
  50. Murthy A S N and Ranganathan S 1982bProc. Indian Acad. Sci. (Chem. Sci.) 91 535Google Scholar
  51. Murthy A S N and Ranganathan S 1983J. Compt. Chem. 4 175CrossRefGoogle Scholar
  52. Nelander B and Ribbegard G 1974J. Mol. Struct. 20 325CrossRefGoogle Scholar
  53. Nyquist R A 1967Spectrochim. Acta 19 1595CrossRefGoogle Scholar
  54. Overend J and Scherer J R 1960J. Chem. Phys. 32 1296CrossRefGoogle Scholar
  55. Overend J, Nyquist R A, Evans J C and Polts W J 1961Specirochim. Acta 17 1205CrossRefGoogle Scholar
  56. Paldus J and Hrabe P 1968Theor. Chim. Acta 11 401CrossRefGoogle Scholar
  57. Pople J A and Beveridge D L 1970Approximate molecular orbital theory (New York: McGraw Hill) p. 110Google Scholar
  58. Pulay P 1969Mol. Phys. 17 197CrossRefGoogle Scholar
  59. Pulay P 1970aMol. Phys. 18 473CrossRefGoogle Scholar
  60. Pulay P 1970bMol. Phys. 21 329CrossRefGoogle Scholar
  61. Pulay P and Meyer W 1971J. Mol. Spectrosc. 40 59CrossRefGoogle Scholar
  62. Pulay P and Meyer W 1972aJ. Chem. Phys. 56 2109CrossRefGoogle Scholar
  63. Pulay P and Meyer W 1972bJ. Chem. Phys. 57 3837CrossRefGoogle Scholar
  64. Pulay P and Torok F 1973Mol. Phys. 25 1153CrossRefGoogle Scholar
  65. Pulay P 1974Theor. Chun. Acta 32 253CrossRefGoogle Scholar
  66. Rafalko J J, Rzepa H S and Swanson B I 1979J. Mol. Struct. 75 363Google Scholar
  67. Rao C N R, Goldman G K and Lurie C 1958J. Phys. Chem. 63 1311CrossRefGoogle Scholar
  68. Ribegard G 1974J. Mol. Struct. 20 325CrossRefGoogle Scholar
  69. Schachtschneider J H 1964 Tech. Report, Shell Oil California, pp. 57–65Google Scholar
  70. Seth-Paul W A and Duyse A V 1972Spectrochim. Acta A30 211Google Scholar
  71. Swanson B I, Arnold T H, Dewar M J S, Rafalko J J, Rzepe H S and Yamaguchi Y 1978aJ. Am. Chem. Soc. 100 771CrossRefGoogle Scholar
  72. Swanson B I, Arnold T H and Yamaguchi Y 1978bJ. Mol. Spectrosc. 78 125, 139CrossRefGoogle Scholar
  73. Swanstrom P, Phomsen K and Yde P B 1971Mol. Phys. 20 1135CrossRefGoogle Scholar
  74. Taft R W 1956Steric effects in organic chemistry (ed.) M S Newman (New York: John Wiley) Chap. 13Google Scholar
  75. Taft R W, Deno N C and Skell P S 1958Annu. Rev. Phys. Chem. 80 49Google Scholar
  76. Thompson H W, Needham R W and Jameson D 1957Spectrochim. Acta 9 208CrossRefGoogle Scholar
  77. Tokagi K and Oka T 1963J. Phys. Soc. Jpn 18 1174CrossRefGoogle Scholar
  78. Torok F, Hegedus L, Kosa K and Pulay P 1976J. Mol. Struct. 32 93CrossRefGoogle Scholar
  79. Torok F and Pulay P 1978J. Mol. Struct. 46 43CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1984

Authors and Affiliations

  • A. Annamalai
    • 1
  • M. Kanakavel
    • 1
  • Surjit Singh
    • 1
  1. 1.Structural Chemistry Group, Department of ChemistryIndian Institute of TechnologyMadrasIndia

Personalised recommendations