Advertisement

Journal of Zhejiang University-SCIENCE A

, Volume 3, Issue 4, pp 426–430 | Cite as

Sliding mode identifier for parameter uncertain nonlinear dynamic systems with nonlinear input

  • Zhang Ke-qin
  • Zhuang Kai-yu
  • Su Hong-ye
  • Chu Jian
  • Gao Hong
Indutrial Control Technology
  • 52 Downloads

Abstract

This paper presents a sliding mode (SM) based identifier to deal with the parameter identification problem for a class of parameter uncertain nonlinear dynamic systems with input nonlinearity. A sliding mode controller (SMC) is used to ensure the global reaching condition of the sliding mode for the nonlinear system; an identifier is designed to identify the uncertain parameter of the nonlinear system. A numerical example is studied to show the feasibility of the SM controller and the asymptotical convergence of the identifier.

Key words

Nonlinear system Sliding mode Identifier Input nonlinearity 

Document code

CLC number

TP273 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chern, T. L., Wu, Y. C., 1991. Design of integral variable structure controller and application to electrohydraulic velocity servosystems.IEEE Proceedings-D,138 (5):439–444.CrossRefGoogle Scholar
  2. Choi, J. H., Misawa, E. A., Young, G. E., 1999. A study on sliding mode state estimation.J. of Dynamic Systems, Measurement, and Control,121(1):121–125.CrossRefGoogle Scholar
  3. Furuta, K., Pan, Y. D., 2000. Variable structure control with sliding sector.Automatica,36(2):211–228.MathSciNetCrossRefMATHGoogle Scholar
  4. Gao, W. B., Hung, J. G., 1993. Variable structure control of nonlinear systems: a new approach.IEEE Transactions on Industrial Electronic,40(1):45–55.CrossRefGoogle Scholar
  5. Hsu, K. C., 1997. Decentralized variable structure control design for uncertain large-scale systems with series non-linearities.Int. J. Control,68(6):1231–1240.CrossRefMATHGoogle Scholar
  6. Hsu, K. C., 1998. Variable structure control design for uncertain dynamic systems with sector nonlinearities.Automatica,34(4):505–508.MathSciNetCrossRefMATHGoogle Scholar
  7. Hu, J. B., Su, H. Y., Chu, J., 2000. A robust gain-scheduling control based on VSC and fuzzy local controller network.Journal of Zhejiang University SCI-ENCE,1(3):249–253.CrossRefMATHGoogle Scholar
  8. Lu, X., Spurgeon, S. K., 1999. Output feedback stabilization of MIMO nonlinear systems via dynamic sliding mode.Int. J. Robust Nonlinear Control,9(2):275–305.MathSciNetCrossRefMATHGoogle Scholar
  9. Misawa, E. A., 1988. Nonlinear state estimation using sliding observers.Massachusetts Institute of Technology, Ph. d. thesis.Google Scholar
  10. Srewal, M. S., Glover, K., 1976. Identifiability of linear and nonlinear dynamical systems.IEEE Trans. on Automatic Control,21(4):833–837.MathSciNetMATHGoogle Scholar
  11. Utkin, V. I., 1977. Variable structure systems with sliding modes.IEEE Trans, Automatic Control,22(2):212–222.MathSciNetCrossRefMATHGoogle Scholar
  12. Xu, J. X., 1993. Parameter identification methodologies based on variable structure control.Int. J. Control,57(5):1207–1220.MathSciNetCrossRefMATHGoogle Scholar
  13. Xu, J. X., 1998. Self-tuning variable structure control method for a class of nonlinear systems.Int. J. Robust Nonlinear Control,8(6):1133–1153.MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Zhejiang University Press 2002

Authors and Affiliations

  • Zhang Ke-qin
    • 1
  • Zhuang Kai-yu
    • 1
  • Su Hong-ye
    • 1
  • Chu Jian
    • 1
  • Gao Hong
    • 2
  1. 1.National Laboratory of Industrial Control Technology, Institute of Advanced Process ControlZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Fluid Power Transmission and ControlZhejiang UniversityHangzhouChina

Personalised recommendations