Journal of Zhejiang University-SCIENCE A

, Volume 1, Issue 2, pp 148–156 | Cite as

Modeling for the diffusion limitation of free radical polymerization

  • Yao Zhen
  • Li Bo-geng
  • Cao Kun
  • Huang Yuan
  • Pan Zu-ren
Science & Engineering


A new model was developed to describe the diffusion limitation on free radical polyme-rization. In this model the termination rate coefficient (kt) and propagation rate coefficient (kp) were expressed as a function of bulk viscosity (η). This model was used to simulate the batch thermal polymerization of styrene (St) and the continuous thermal bulk copolymerization of St (monomer 1) and maleic anhydride (MAH, monomer 2) in a CSTR with on-line monitor of the rheological behavior. The simulated results on polymerization conversion, copolymer composition, molecular weight and its distributions were compared with the experimental data, and the results calculated by two previous gel-effect models i.e. Martin-Hamielec and Tulig-Tirrell models. It was found that the present model produces better prediction than that of the Tulig-Tirrell model and has the same accuracy as that of the Martin-Hamielec model, but is much simpler.

Key words

modeling diffusion controlled polymerization bulk viscosity 

Document code

CLC number

O632.13 TQ325.2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achilias, D. S. and Kiparissides, C., 1988. Modeling of diffusion-controlled free-radical polymerizations.J. Appl. Polym. Sci. 35: 1303–1323.CrossRefGoogle Scholar
  2. Achilias, D. S. and Kiparissides, C., 1992a. Development of a general mathematical framework of modeling diffusion-controlled free-radical polymerization reactions.Macromolecules,25: 3739–3750.CrossRefGoogle Scholar
  3. Achilias, D. S. and Kiparissides, C., 1992b. Toward the development of a general framework for modeling molecular weight and compositional changes in free-radical copolymerization reactions.J. Macromol. Sci., Rev. Macromol. Chem. Phys. C32: 183–234.CrossRefGoogle Scholar
  4. Bueche, M., 1962. Physical Properties of Polymers. Interscience Publishers, New York.Google Scholar
  5. Callaghan, P. T. and Pinder, D. N., 1980. Dynamics of entangle polystyrene solutions studied by plused field gradient nuclear magnetic resonance.Macromolecules,13: 1085–1092.CrossRefGoogle Scholar
  6. Cardenas, J. and O’Driscoll, K. F., 1977. High conversion polymerization. II Influence of chain transfer on the gel effect. III Kinetic behavior of ethyl methacrylate.J. Polym. Sci., Polym. Chem. Ed.,15: (II): 1883–1889; (III) 2097–2108.CrossRefGoogle Scholar
  7. Chiu, W. Y., Carratt, G. M. and Soong, D. S., 1983. A computer model for the gel effect in free radical polymerization.Macromolecules,16: 348–357.CrossRefGoogle Scholar
  8. de Gennes, P. G., 1971. Reptation of a polymer chain in the presence of fixed obstacles.J. Chem. Phys.,55: 572–579.CrossRefGoogle Scholar
  9. de Gennes, P. G., 1976. Dynamics of entangled polymer solutions. I The rouse model. II In clusion of hydrodynamic interactions.Macromolecules,9: (1), 587–593; (II) 594–598.CrossRefGoogle Scholar
  10. de Gennes, P. G., 1979. Brownian motions of flexible polymer chains,Nature (London),282: 367–370.CrossRefGoogle Scholar
  11. Duerkon, J. H., Hamielec, A. E. and Hogins, J. W., 1967. Polymer reactors and molecular weight distribution: Part I Free radical polymerization in continuous stirred-tank reactors.A. I. Ch. E. J.,13: 1081–1086.CrossRefGoogle Scholar
  12. Ferry, J. D., 1970. Viscoelastic Properties of Polymer. Willy-Interscience, New York.Google Scholar
  13. Fujita, H., 1961. Diffusion in polymer-diluent systems.Advance in Polym. Sci.,3: 1–47.CrossRefGoogle Scholar
  14. Fujita, H., 1991. Notes on free volume theories.J. Polym.,23: 1499–1506.CrossRefGoogle Scholar
  15. Hervet, H., Leger, L. and Rondelez, F., 1979. Self-diffusion in polymer solution: A test for scaling and reptation.Phys. Rev. Lett. 42: 1681–1684.CrossRefGoogle Scholar
  16. Hui, A. W. T. and Hamielec, A. E., 1972. Thermal polymerization of styrene at high conversion and temperaturatures. An experimental study.J. Appl. Polym. Sci.,16: 749–769.CrossRefGoogle Scholar
  17. Husain, A. and Hamielec, A. E., 1978. Thermal polymerization of styrene.J. Appl. Polym. Sci.,22: 1207–1223.CrossRefGoogle Scholar
  18. Ito, K., 1980. Evaluation of molecular weight in terms of the gel effect in radical polymerization.J. Polym.,8: 499–506.CrossRefGoogle Scholar
  19. Ito, K., 1981. Estimation of termination rate by the free volume theory in radical polymerization.J. Polym.,13: 727–731.CrossRefGoogle Scholar
  20. Jones, C. E. Roland and Reynolds, G. E. J., 1969. Pyrolysis/gas chromatography applied to problem of sequence analysis and microstructure in copolymers.Brit. Polym. J.,1: 197–207.CrossRefGoogle Scholar
  21. Klein, J., 1978. Evidence for reptation in an entangled polymer melt.Nature (London),271: 143–146.CrossRefGoogle Scholar
  22. Marten, F. L. and Hamielec, A. E., 1979. High conversion diffusion-controlled polymerization.ACS Sym. Ser.,104: 43–70.CrossRefGoogle Scholar
  23. Marten, F. L. and Hamielec, A. E., 1982. High-conversion diffusion controlled polymerization of styrene.J Appl. Polym. Sci.,27: 489–505.CrossRefGoogle Scholar
  24. Mendelson, P. A., 1979. A method for viscosity measurements of concentrated polymer solutions in volatile solvents at elevated temperature.J. Rheology,23: 545–556.CrossRefGoogle Scholar
  25. O’Neil, G. A. and Torkelson, J. M., 1997. Recent advances in the understanding of the gel effect in free-radical polymerization.Trends in Polym. Sci. 5: 349–355.Google Scholar
  26. Sharmal, D. K. and Soong, D. S., 1988. High-conversion diffusion-controlled copolymerization kinetics.Macromolecules,21: 700–710.CrossRefGoogle Scholar
  27. Soh, S. K. and Sunderg, D. C., 1982. Diffusion-controlled vinyl polymerization. I The gel effect. II Limitions on the gel effect. III Free volume parameters and diffusion-controlled. IV Comparison of theory and experiment.J. Polym. Sci. Polym. Chem. Ed.,20: (1): 1299–1314; (II) 1315–1330; (III) 1331–1334; (IV) 1345–1371.CrossRefGoogle Scholar
  28. Tulig, J. T. and Tirrell, M., 1981. Toword a molecular theory of the trommsdorff effect.Macromolecules,14: 1501–1511.CrossRefGoogle Scholar
  29. Turner, D. T., 1977. Autoacceleration of free-radical polymerization. I The critical concentration.Macromolecules,10: 221–226.CrossRefGoogle Scholar
  30. Vivaldoo-Lima, E., Hamielec, A. E. and Wood, P. E., 1994. Auto-acceleration effect in free radical polymerization. A comparison of the CCS and MAH models.Polymer Reaction Engineering,2: 17–85.CrossRefGoogle Scholar
  31. Vrentas, J. S. and Duda, J. L., 1993. Comparison of free-volume theories.J. Polym. 25: 99–101.CrossRefGoogle Scholar
  32. Vrentas, J. S. and Duda, J. L., 1977. Diffusion in polymer-solvent systems. I Reexamination of the free-volume theory. II A predictive theory for the dependence of diffusion coefficients on temperature. concentration, and molecular weight.J. Polym. Sci., Polym. Chem. Ed.,15: (1) 403–416; (II) 417–439.CrossRefGoogle Scholar
  33. Yao, Z., Li, B. G., Cao, K. and Pan, Z. R., 1998. Semi-continuous thermal bulk copolymerization of styrene and maleic anhydride-experiments and reactor model.J. Appl. Polym. Sci.,67: 1905–1912.CrossRefGoogle Scholar
  34. Yao, Z., Li, B. G., Wang, W. J. and Pan, Z. R., 1999. Continuous thermal bulk copolymerization of styrene and maleic anhydride.J. Appl. Polym. Sci.,73: 615–622.CrossRefGoogle Scholar

Copyright information

© Zhejiang University Press 2000

Authors and Affiliations

  • Yao Zhen
    • 1
  • Li Bo-geng
    • 1
  • Cao Kun
    • 1
  • Huang Yuan
    • 1
  • Pan Zu-ren
    • 1
  1. 1.State Key Laboratory of Polymer Reaction EngineeringYuquan Campus of Zhejiang UniversityHangzhouChina

Personalised recommendations