Popperian geophysics and tunnelling algorithm

  • P. S. Moharir


Parasnis has observed in a presidential address that geophysics is not a Popperian science in a major way. That is, hypotheses are not consciously put forth in a falsifiable format and much of the effort goes in seeking supporting evidence for favoured hypotheses. Parker evolved a parameter extremization strategy, initially to tackle the problem of non-uniqueness in geophysical inference. Later he based a hypothesis testing proposal on it, which is refreshingly Popperian. It has not been adopted widely, partly because it requires global extrema, and not local and this has been regarded as a problem with no solution. Attention is drawn towards tunnelling algorithm, which solves the problem of global optimization successfully, makes Parker’s Popperian proposal practical and extends the range of Popperian geophysics.


Popperian geophysics tunnelling algorithm Popper’s demarcation criterion Parker’s theory non-uniqueness in geophysical inference local minimum syndrome 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ander M E and Huestis S P 1987 Gravity ideal bodies;Geophysics 52 1265–1278CrossRefGoogle Scholar
  2. Aoki M 1971Introduction to optimization techniques (New York: Macmillan) pp 146–163Google Scholar
  3. Backus G E and Gilbert J F 1970 Uniqueness in the inversion of inaccurate gross earth data;Philos. Trans. R. Soc. London A266 123–192Google Scholar
  4. Bellman R E 1961Adaptive control processes (Princeton: University Press)Google Scholar
  5. Benvenuto N and Marchesi M 1989 Digital filter design by simulated annealing;IEEE Trans. Circuits System 36 459–460CrossRefGoogle Scholar
  6. Bohachevsky I, Johnson M and Stein M 1986 Generalized simulated annealing for function optimization;Technometrics 28 209–217CrossRefGoogle Scholar
  7. Brush S G 1974 Should the history of science be rated X?;Science 183 1164–1172CrossRefGoogle Scholar
  8. Burley D M 1974Studies in optimization (Norfolk: Intertext Books)Google Scholar
  9. Cabrielli C A 1984 Minimum entropy deconvolution and simplicity: a noniterative algorithm;Geophysics 50 394–413CrossRefGoogle Scholar
  10. Curry H B 1965 The relation of logic to science; InInformation and prediction in science (eds) S Dockx and P Bernays (New York: Academic Press) pp 79–97Google Scholar
  11. Dennis Jr J E and Schnabel R B 1983Numerical methods for unconstrained optimization and nonlinear equations (Englewood Cliffs: Prentice Hall) pp 147–152Google Scholar
  12. Donoho D 1980 On minimum entropy deconvolution; In:Applied time-series II (ed.) D Findley (New York: Academic Press)Google Scholar
  13. Dosso S E and Oldenburg D W 1991 Magnetotelluric appraisal using simulated annealing;Geophys. J. Int. 106 379–385CrossRefGoogle Scholar
  14. Farhat N H and Bai B 1987 Phased-array antenna pattern synthesis by simulated annealing;Proc. IEEE 75 842–844Google Scholar
  15. Goldstein A A and Price J F 1971 On descent from local minima;Math. Comput. 25 569–575CrossRefGoogle Scholar
  16. Gomez S and Levy A V 1982 The tunnelling method for solving the constrained global optimization problems with several non-connected feasible regions; In:Numerical analysis (ed.) J P Hennart (Berlin; Springer-Verlag) pp 34–37CrossRefGoogle Scholar
  17. Gray W C 1979Variable norm dec (involution; Ph. D Thesis, Stanford Univ.Google Scholar
  18. Gubbins D 1975 Can the earth’s magnetic field be sustained by core oscillations?;Geophys. Res. Lett. 2 409–412CrossRefGoogle Scholar
  19. Halstead B 1980 Karl Popper: good philosophy, bad science;New Sci. 87 215–217Google Scholar
  20. Hesse M B 1964 Francis Bacon; In: A critical history of western philosophy (ed.) D J O’Connor (London: The Free Press of Glencoe) pp 145Google Scholar
  21. Johnson D S, Aragon C R, McGeoch L A and Schevon C 1989 Optimization by simulated annealing; an experimental evaluation: Part I: Graph partitioning:Oper. Res. 37 865–892CrossRefGoogle Scholar
  22. Jacoby S L S, Kowalik J S and Pizzo J T 1972Iterative methods for nonlinear optimization problems (Englewood Cliffs: Prentice-Hall) pp 13–25Google Scholar
  23. Jordan T H 1975 The continental tectosphere;Rev. Geophys. Space Phys. 13 1–12CrossRefGoogle Scholar
  24. Khattri K N, Mohan C and Shanker K 1987 A random search technique of nonlinear optimization for the inversion of gravity data; Sixth Indian Geol. Cong. Roorkee: MG-8Google Scholar
  25. Kirkpatrick S, Galatt R C D and Vecchi M P 1983 Optimization by simulated annealing;Science 220 671–680CrossRefGoogle Scholar
  26. Kuhn T S 1970The structure of scientific revolutions (Chicago: The Univ. Chicago Press) 210 ppGoogle Scholar
  27. Lakatos I 1978The methodology of scientific research programmes (London: Cambridge Univ. Press) 45 ppGoogle Scholar
  28. Landa E, Beydoun W and Tarantola A 1989 Reference velocity model estimation from prestacked waveforms: Coherency optimization by simulated annealing;Geophys. 54 984–990CrossRefGoogle Scholar
  29. Laudan L 1977Progress and its problems: towards a theory of scientific growth (Berkeley: University of California Press)Google Scholar
  30. Laudan L 1984Science and values: the aims of science and their role in scientific debate (Berkeley: University of California Press)Google Scholar
  31. Le Grand H E 1988Drifting continents and shifting theories (Cambridge: University Press) 313 ppGoogle Scholar
  32. Levy A V and Gomez S 1980 The tunnelling gradient restoration algorithm for the global minimization of nonlinear functions subject to nonlinear inequality constraints, IIMAS-UNAM rep. no. 231Google Scholar
  33. Levy A V and Gomez S 1985 The tunnelling method applied to global optimization; In:Numerical optimization (eds) P T Boggs, R H Byrd and R B Schnabel (Philadelphia: Soc. Indust. App. Math.) pp 213–244Google Scholar
  34. Levy A V and Montalvo A 1977 The tunnelling algorithm for the global optimization of functions (Dundee: Dundee Bienn. Conf. Numer. Anal.)Google Scholar
  35. Levy A V and Montalvo A 1985 The tunnelling algorithm for the global minimization of functions;Soc. Ind. Appl. Math. J. Stat. Comput. 6 15–29Google Scholar
  36. Levy A V, Montalvo A, Gomez S and Calderon A 1982 Topics in global optimization; In:Numerical analysis (eds) A Dold and B Eckman (Berlin: Springer-Verlag) pp 18–33CrossRefGoogle Scholar
  37. Menke W 1989Geophysical data analysis: discrete inverse theory (San Diego: Academic Press) pp 155–156Google Scholar
  38. Moharir P S 1988A priori information, In (ed.) Murthy Y S (Waltair: Souvenir 14th Ann. Conv. AEG) 67–72Google Scholar
  39. Moharir P S 1990 Inversion of potential field data;Proc. Indian Acad. Sci. (Earth. Planet. Sci.) 99 473–514Google Scholar
  40. Moharir P S 1992a History syndrome;Proc. Indian Acad. Sci. (Earth Planet. Sci.) Google Scholar
  41. Moharir P S 1992b Informative scientific ordination; Geos. (to appear)Google Scholar
  42. Montalvo A 1979Desarrollo de un nuevo algoritmo para la minimizacion global de funciones, Ph. D thesis, National Autonomous Univ. MexicoGoogle Scholar
  43. Mora P 1989 Inversion = migration + tomography;Geophysics 54 1575–1586CrossRefGoogle Scholar
  44. Ooe M and Ulrych T J 1979 Minimum entropy deconvolution with an exponential transformation;Geophys. Prospect. 27 458–473CrossRefGoogle Scholar
  45. Oldroyd D R 1990The Highlands controversy (Chicago: The University of Chicago Press) 438 pGoogle Scholar
  46. Parasnis D S 1980 A Popperian look at geophysics: Presidential address;Geophys. Prospect. 28 667–673CrossRefGoogle Scholar
  47. Pardalos P M and Rosen J B 1986 Methods for global concave minimization: a bibliographic survey;SIAM Rev. 28 367–379CrossRefGoogle Scholar
  48. Pardalos P M and Rosen J B 1987Constrained global optimization: algorithms and applications (Berlin: Springer-Verlag) 143 ppGoogle Scholar
  49. Parker R L 1974 Best bounds on density and depth from gravity data;Geophysics 39 644–649CrossRefGoogle Scholar
  50. Parker R L 1975 The theory of ideal bodies for gravity interpretation; Geophys;J. R. Astron. Soc. 42 315–334Google Scholar
  51. Parker R L 1977 Understanding inverse theory, In:Annu. Rev. Earth Planet. Sci. (eds) F A Donath, F G Stehli, and G W Wetherill5 (Palo Alto: Annual Reviews Inc.) pp 35–64Google Scholar
  52. Peirce C S 1957Essays in the philosophy of science (Indianapolis: Bobbs-Merrill) pp 191–192Google Scholar
  53. Popper K R 1968The logic of scientific discovery (New York: Harper Torchbooks) 480 ppGoogle Scholar
  54. Popper K R 1984Conjectures and refutations: the growth of scientific knowledge (London: Routledge and Kegan Paul) pp 251–292, 385–413Google Scholar
  55. Powell M J D 1982Nonlinear optimization (London: Academic Press) pp 319–335Google Scholar
  56. Price W L 1978 A controlled random search procedure for global optimization; In:Towards global optimization 2 (eds) L C W Dixon and G P Szego (Amsterdam: North Holland) pp 71–84Google Scholar
  57. Quinton A M 1964 Contemporary British philosophers; In:A critical history of western philosophy (London: The Free Press of Glencoe) 552Google Scholar
  58. Ray W H and Szekely J 1973Process optimization (New York: John Wiley) pp 243–244Google Scholar
  59. Rothman D H 1985 Nonlinear inversion, statistical mechanics and residual statics estimation;Geophysics 50 2784–2796CrossRefGoogle Scholar
  60. Rudwick M 1985The great Devonian controversy (Chicago: University Press)Google Scholar
  61. Runge R J and Runge K J 1991 Obtaining lumped (blocked) well logs by simulated annealing;Log. Anal. 32 371–377Google Scholar
  62. Sastry R G S and Moharir P S 1990 Regularizing tunnelling algorithm in nonlinear gravity problem—a numerical study,IAG Symp. 103 Gravity, gradiometry and gravimetry (eds) R Rummel and R G Hipkin (New York: Springer-Verlag) pp 171–179Google Scholar
  63. Schneider Jr W W and Whitman W W 1990 Dipmeter analysis by a Monte Carlo technique;Geophysics 55 320–326CrossRefGoogle Scholar
  64. Secord J 1986Controversy in Victorian geology (Princeton: University Press)Google Scholar
  65. Szu H H and Hartley R L 1987 Nonconvex optimization by fast simulated annealing;Proc. IEEE 75 1538–1540Google Scholar
  66. Teotia S S 1985Simple structure deconvolution scheme of seismograms; M. Tech. dissertation (Roorkee: University of Roorkee)Google Scholar
  67. Treccani G 1978 A global descent optimization strategy, In:Towards global optimization 2 (eds) L C W Dixon and G P Szego (Amsterdam: North Holland) pp 165–177Google Scholar
  68. Wiggins R 1978 Minimum entropy deconvolution;Geoexploration 16 21–35CrossRefGoogle Scholar
  69. Wiggins R 1985 Entropy guided deconvolution;Geophysics 50 2720–2726CrossRefGoogle Scholar
  70. Yao Y 1989 Dynamic tunnelling algorithm for global optimization;IEEE Trans. Syst. Man Cybern. 19 1222–1230CrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1992

Authors and Affiliations

  • P. S. Moharir
    • 1
  1. 1.National Geophysical Research InstituteHyderabadIndia

Personalised recommendations