Advertisement

Nonlinear kinetic theory and pulse interactions in phase transition

  • Zhang Yi-fang
Article
  • 35 Downloads

Abstract

The kinetics of nucleation of phase transition is a phenomenal theory. Some new technologies of preparation of nanomaterials, for example, by shock wave and by electropulsing, are pulse interactions. Based on the known nonlinear theories of phase transition, the nonlinear kinetics of phase transition is discussed, and a soliton-like model is proposed. This mathematical method can not only explain the basic characteristics of pulse interactions and suddenness of phase transition, and possesses a consistency of mechanism for nucleation and growth.

Key words

phase transition nonlinear theory nueleation soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rao C N R and Rao K. G.Phase Transition. McGraw-Hill. New York. 1978Google Scholar
  2. 2.
    Fang L, Wood W E and Atteridge D G. Identification and Range Quantification of Steel Transformation Products by Transformation Kinetics.Metel. Mater. Trans., 1977, 28A(1):5–14Google Scholar
  3. 3.
    Malek J and Mitsuhashi T. Testing Methods for the Johnson-Mehl-Avrami Equation in Kinetic Analysis of Crystallization Processes.J. Am. Ceram. Soc., 2000, 83(8):2103–2105CrossRefGoogle Scholar
  4. 4.
    Tomellini M, Fanfoni M and Volpe M. Spatially Correlated Nuclei: How the Johnson-Mehl-Avrami-Kolmogorov Formula Is Modified in the Case of Simultaneous Nucleation.Phys. Rev., 2000, B62(17):11300–11303Google Scholar
  5. 5.
    Yildirim T, Ciraci S, Kilic C and Buldum A. First-principles Investigation of Structural and Electronic Properties of Solid Cubane and Its Doped Derivatives.Phys. Rev., 2000, B62(11): 7625–7633Google Scholar
  6. 6.
    Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D. Iterative Minimization Techniques for Ab initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients.Rev. Mod. Phys., 1992, 64(4):1045–1097.CrossRefGoogle Scholar
  7. 7.
    Lill J V and Broughton J Q. Linear and Nonlinear Elasticity in Atomistic Simulations.Model. Simul. Mater. Sci. Eng., 2000, 8(3):357–375.CrossRefGoogle Scholar
  8. 8.
    Yoshizava Y, Oguma S and Yamauchi K. New Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure.J. Appl. Phys., 1988, 64(10):6044–6046CrossRefGoogle Scholar
  9. 9.
    Koster U, Schunemann U, Black-Bewersdorff M, Brauer S, Sutton M and Stephenson G B. Nanocrystalline Materials by Crystallization of Metal-Metalloid Glasses.Mat. Sci. Eng., 1991, A133:611–615CrossRefGoogle Scholar
  10. 10.
    Liu Z, Zhao H, Lu Y, Li X and Zhang S. Crystallization of Amorphous Alloy, Induced by Shock Wave.Acta Metal. Sinica, 1996, 32(8):862–866Google Scholar
  11. 11.
    Liu Z, Zhang Y, Zhou X, Liu X, Kan J and Lu Y. Restraining of Cu and Nb Functions in Shock Wave Crystallization of Amorphous Alloy FINEMET.Acta Metal. Sinica, 2000, 36 (2):120–122Google Scholar
  12. 12.
    Liu Z, Zhang Y and Lu Y. Shock Wave Nanocrystallization of Alloy and Its Characteristics.Chinese J. High Pres. Phys., 2000, 14(4):257–263Google Scholar
  13. 13.
    Chang Y F, Lu Y, Ren D and Chen Y. Two Technologies of Preparation of Naromaterial and Their Characteristics.Functional Materials, 2001, 32(10):1890–1891Google Scholar
  14. 14.
    Qin R, Yan H, He G and Zhou B. Exploration on the Fabrication of Bulk Nanocrystalling Materials by Direct-Narocrystallizing Method.Chinese J. Mat. Res., 1995, 9(3):219–222Google Scholar
  15. 15.
    Zhang W, Sui M, Guo X, He G, Hu K, Zhou B and Li D. Local Nanostructures in H62 Copper Alloy Produced by Current Electropulsing.Chinese J. Mat. Res., 2000, 14(3):239–243Google Scholar
  16. 16.
    Koehler T R and Gills H S. Phase Transition in A Model of Interacting Anharmonic Oscillators.Phys. Rev., 1973, B7(11):4980–4999Google Scholar
  17. 17.
    Gills H S and Koehler T R. Phase Transition in Simple Model Ferroelectric-Comparison of Exact and Variational Treatments of A Molecular—Field Hamiltonian.Phys. Rev., 1974, B9 (9):3806–3818CrossRefGoogle Scholar
  18. 18.
    Gills H S. Phase Transition in A Simple Model Ferroelectric. II. Comment on the Self-Consistent Phonon Approximation.Phys. Rev., 1975, B11(1):309–317Google Scholar
  19. 19.
    Stamenkovic S, Plakida N M, Aksienov L V and Siklos T. Unified Theory of Ferroelectric Phase Transition.Phys. Rev., 1976, B14(11):5080–5087Google Scholar
  20. 20.
    Munster G, Strumia A and Tetradis N. Comparison of Two Methods for Calculating Nucleation Rates.Phys. Lett., 2000, 271A(1–2):80–86Google Scholar
  21. 21.
    Russell K C. Phase Stability under Irradiation.Prog. Mat. Science. 1984, 28(3–4):229–434CrossRefGoogle Scholar
  22. 22.
    Chang Y F.New Research of Particle Physics and Relativity. Kunming: Yunnan Science and Technology Press, 1989:159–161Google Scholar
  23. 23.
    Will G, Gobel H, Sampson C F and Forsyth J B. Crystallographic Distortion in TbVO at 32K.Phys. Lett., 1972, 38A (3):207–208Google Scholar
  24. 24.
    Becker P J, Leask M J M and Tyte R N. Optical Study of the Cooperative Jahn-Teller Transition in Thulium Vanadate.J. Phys. C., 1972, 5(15):2027–2036CrossRefGoogle Scholar

Copyright information

© Wuhan University of Technology 2003

Authors and Affiliations

  • Zhang Yi-fang
    • 1
  1. 1.Department of PhysicsYunnan UniversityKunmingChina

Personalised recommendations