Skip to main content
Log in

Nonlinear kinetic theory and pulse interactions in phase transition

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The kinetics of nucleation of phase transition is a phenomenal theory. Some new technologies of preparation of nanomaterials, for example, by shock wave and by electropulsing, are pulse interactions. Based on the known nonlinear theories of phase transition, the nonlinear kinetics of phase transition is discussed, and a soliton-like model is proposed. This mathematical method can not only explain the basic characteristics of pulse interactions and suddenness of phase transition, and possesses a consistency of mechanism for nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rao C N R and Rao K. G.Phase Transition. McGraw-Hill. New York. 1978

    Google Scholar 

  2. Fang L, Wood W E and Atteridge D G. Identification and Range Quantification of Steel Transformation Products by Transformation Kinetics.Metel. Mater. Trans., 1977, 28A(1):5–14

    Google Scholar 

  3. Malek J and Mitsuhashi T. Testing Methods for the Johnson-Mehl-Avrami Equation in Kinetic Analysis of Crystallization Processes.J. Am. Ceram. Soc., 2000, 83(8):2103–2105

    Article  CAS  Google Scholar 

  4. Tomellini M, Fanfoni M and Volpe M. Spatially Correlated Nuclei: How the Johnson-Mehl-Avrami-Kolmogorov Formula Is Modified in the Case of Simultaneous Nucleation.Phys. Rev., 2000, B62(17):11300–11303

    CAS  Google Scholar 

  5. Yildirim T, Ciraci S, Kilic C and Buldum A. First-principles Investigation of Structural and Electronic Properties of Solid Cubane and Its Doped Derivatives.Phys. Rev., 2000, B62(11): 7625–7633

    CAS  Google Scholar 

  6. Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D. Iterative Minimization Techniques for Ab initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients.Rev. Mod. Phys., 1992, 64(4):1045–1097.

    Article  CAS  Google Scholar 

  7. Lill J V and Broughton J Q. Linear and Nonlinear Elasticity in Atomistic Simulations.Model. Simul. Mater. Sci. Eng., 2000, 8(3):357–375.

    Article  CAS  Google Scholar 

  8. Yoshizava Y, Oguma S and Yamauchi K. New Fe-Based Soft Magnetic Alloys Composed of Ultrafine Grain Structure.J. Appl. Phys., 1988, 64(10):6044–6046

    Article  Google Scholar 

  9. Koster U, Schunemann U, Black-Bewersdorff M, Brauer S, Sutton M and Stephenson G B. Nanocrystalline Materials by Crystallization of Metal-Metalloid Glasses.Mat. Sci. Eng., 1991, A133:611–615

    Article  Google Scholar 

  10. Liu Z, Zhao H, Lu Y, Li X and Zhang S. Crystallization of Amorphous Alloy, Induced by Shock Wave.Acta Metal. Sinica, 1996, 32(8):862–866

    CAS  Google Scholar 

  11. Liu Z, Zhang Y, Zhou X, Liu X, Kan J and Lu Y. Restraining of Cu and Nb Functions in Shock Wave Crystallization of Amorphous Alloy FINEMET.Acta Metal. Sinica, 2000, 36 (2):120–122

    CAS  Google Scholar 

  12. Liu Z, Zhang Y and Lu Y. Shock Wave Nanocrystallization of Alloy and Its Characteristics.Chinese J. High Pres. Phys., 2000, 14(4):257–263

    CAS  Google Scholar 

  13. Chang Y F, Lu Y, Ren D and Chen Y. Two Technologies of Preparation of Naromaterial and Their Characteristics.Functional Materials, 2001, 32(10):1890–1891

    Google Scholar 

  14. Qin R, Yan H, He G and Zhou B. Exploration on the Fabrication of Bulk Nanocrystalling Materials by Direct-Narocrystallizing Method.Chinese J. Mat. Res., 1995, 9(3):219–222

    CAS  Google Scholar 

  15. Zhang W, Sui M, Guo X, He G, Hu K, Zhou B and Li D. Local Nanostructures in H62 Copper Alloy Produced by Current Electropulsing.Chinese J. Mat. Res., 2000, 14(3):239–243

    CAS  Google Scholar 

  16. Koehler T R and Gills H S. Phase Transition in A Model of Interacting Anharmonic Oscillators.Phys. Rev., 1973, B7(11):4980–4999

    CAS  Google Scholar 

  17. Gills H S and Koehler T R. Phase Transition in Simple Model Ferroelectric-Comparison of Exact and Variational Treatments of A Molecular—Field Hamiltonian.Phys. Rev., 1974, B9 (9):3806–3818

    Article  Google Scholar 

  18. Gills H S. Phase Transition in A Simple Model Ferroelectric. II. Comment on the Self-Consistent Phonon Approximation.Phys. Rev., 1975, B11(1):309–317

    Google Scholar 

  19. Stamenkovic S, Plakida N M, Aksienov L V and Siklos T. Unified Theory of Ferroelectric Phase Transition.Phys. Rev., 1976, B14(11):5080–5087

    CAS  Google Scholar 

  20. Munster G, Strumia A and Tetradis N. Comparison of Two Methods for Calculating Nucleation Rates.Phys. Lett., 2000, 271A(1–2):80–86

    Google Scholar 

  21. Russell K C. Phase Stability under Irradiation.Prog. Mat. Science. 1984, 28(3–4):229–434

    Article  CAS  Google Scholar 

  22. Chang Y F.New Research of Particle Physics and Relativity. Kunming: Yunnan Science and Technology Press, 1989:159–161

    Google Scholar 

  23. Will G, Gobel H, Sampson C F and Forsyth J B. Crystallographic Distortion in TbVO at 32K.Phys. Lett., 1972, 38A (3):207–208

    Google Scholar 

  24. Becker P J, Leask M J M and Tyte R N. Optical Study of the Cooperative Jahn-Teller Transition in Thulium Vanadate.J. Phys. C., 1972, 5(15):2027–2036

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

ZHANG Yi-fang: Born in 1947

Funded by Natural Science Foundation of Yunnan (No. 2002E0008M).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yi-fang, Z. Nonlinear kinetic theory and pulse interactions in phase transition. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 18, 15–18 (2003). https://doi.org/10.1007/BF02838791

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02838791

Key words

Navigation