Advertisement

A flier-plate material with graded impedance used in dynamic high-pressure physics

  • Wang Chuan-bin
  • Shen Qiang
  • Zhang Lian-meng
Article

Abstract

By using such flier-plate material, quasi-isentropic compression can be realized. Based on it, hypervelocity launching is further accomplished. As a result, an extremely high dynamic pressure can be obtained in laboratory, offering a practical method for the comprehensive determination of materials behavior, response, equation-of-state and properties in dynamic loading process.

Key words

flier-plate material with graded impedance quasi-isentropic compression hypervelocity launching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M Niino, T Hirai. Functionally Gradient Materials.J. Jpn. Soc. Compos. Mater., 1987, 13(6): 257–264Google Scholar
  2. 2.
    R Z Yuan, L M Zhang. Design and Fabrication of a MgO/Ni Functionally Gradient Material.Journal of Materials Synthesis and Processing, 1993, 1(3): 171–179Google Scholar
  3. 3.
    L M Zhang, M Oomori. Residual and Working Stresses of a TiC/Ni3Al FGM and Its Structural Optimization.J. Mater. Sci. Letters, 1995, 14(22): 1620–1623CrossRefGoogle Scholar
  4. 4.
    F Q Jing. Ultrahigh Dynamic Pressure Techniques (I).Explosion and Shock, 1984, 4(3): 1–9Google Scholar
  5. 5.
    F Q Jing. Ultrahigh Dynamic Pressure Techniques (II).Explosion and Shock, 1984, 4(4): 24–29Google Scholar
  6. 6.
    N Y Wang. The Gas Gun Facility for Material Impact Experiments.Explosion and Shock, 1993, 13(1): 90–96Google Scholar
  7. 7.
    J G Wang. The Launching Technique of Hypervelocity Projectiles in Two-stage Light Gas Gun.Chinese Journal of High Pressure Physics, 1992, 6(4): 264–272Google Scholar
  8. 8.
    F Ding, S H Huang. Dynamic Quasi-isentropic Compression of Oxygen Free Copper.Chinese Journal of High Pressure Physics, 1990, 4(2): 150–155Google Scholar
  9. 9.
    L M Barker, D D Scott. Development of a High-pressure Quasi-isentropic Plane Wave Generating Capability.SAND, 84-0432: 1–50Google Scholar
  10. 10.
    L C Chhabildas, J E Dunn. An Impact Technique to Accelerate Flier Plates to Velocities Over 12km/s.Int. J. Impact Engng., 1993, 14: 121–132CrossRefGoogle Scholar
  11. 11.
    X Q Ma.Shock Dynamics. Beijing: Beijing University of Science and Technology Press, 1992: 172–183Google Scholar
  12. 12.
    F Q Jing. Hypervelocity Impact Phenomena.Explosion and Shock, 1990, 10(3): 279–288Google Scholar
  13. 13.
    L M Barker. High-pressure Quasi-isentropic Impact Experiments. In: J R Asay,Shock Compression of Condensed Matter —1983, Amsterdam, 1984: 217–224Google Scholar
  14. 14.
    L C Chhabildas, L M Barker. Dynamic Quasi-isentropic Compression of Tungsten. In: S C Schmidt,Shock Compression of Condensed Matter—1987, Amsterdam, 1988: 111–114Google Scholar
  15. 15.
    L C Chhabildas, J R Asay. Dynamic Yield Strength and Spall Strength Measurements Under Quasi-Isentropic Loading.SAND90-0883CGoogle Scholar
  16. 16.
    L C Chhabildas, L N Kmetyk. Enhanced Hypervelocity Launcher-capabilities to 16km/s.Int. J. Impact Engng., 1995, 17: 183–194CrossRefGoogle Scholar
  17. 17.
    J B Hu. Sound Velocities at High Pressures and Shock-melting of Copper.Chinese Journal of High Pressure Physics, 1989, 3 (3): 187–197Google Scholar
  18. 18.
    X H Zhao, Q M Li. Dynamic Properties of TC—4 Titanium Under High Strain-rate.Explosion and Shock, 1990, 10(3): 239–243Google Scholar
  19. 19.
    J G Wang, X Z Li. Shock Compression Properties of Three Tungsten Alloys.Chinese Journal of High Pressure Physics, 1998, 12(4): 258–263Google Scholar
  20. 20.
    S H Huang, F Ding. Dynamic Quasi-isentropic Compression of Oxygen Free Copper. In: S C Schmidt,Shock Compression of Condensed Matter—1989, Amsterdam, 1990: 313–316Google Scholar
  21. 21.
    Q Shen, L M Zhang. Fabrication of W−Mo−Ti System Flier-plate with Graded Impedance for Generating Quasi-isentropic Compression.Chinese Science Bulletin, 2000, 45(15): 1421–1423CrossRefGoogle Scholar
  22. 22.
    J S Hua, F Q Jing. Study of Numerical Simulation for Quasi-isentropic Compression.Chinese Journal of High Pressure Physics, 2000, 14(3): 195–202Google Scholar
  23. 23.
    J S Hua, H Tan. Theoretical Design of Hypervelocity Launcher.Chinese Journal of High Pressure Physics, 1999, 13(sup.): 277–280Google Scholar
  24. 24.
    S M Lin, N X Xu. Numerical Simulations of Hypervelocity Launchers.Chinese Journal of High Pressure Physics, 2000, 14 (2): 139–145Google Scholar

Copyright information

© Wuhan University of Technology 2002

Authors and Affiliations

  • Wang Chuan-bin
    • 1
  • Shen Qiang
    • 1
  • Zhang Lian-meng
    • 1
  1. 1.State Key Lab of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanChina

Personalised recommendations