Electrochemical synthesis and absorption properties of gold nanorods

  • Zhu Jian
  • Wang Yong-Chang
  • Yan Shi-Nong
  • Lu Yi-min


Suspended gold nanorods have been synthesized via an electrochemical method. The absorption spectrum features show two peaks at 520nm and 650nm, which result from the transverse and longitudinal surface plasmon resonance. The spectra at different growth stages indicate that the absorption peaks split and shift after electrolysis, which correspond to the anisotropy growth of nanorods. The quasi-static calculation results indicate that with increasing the mean aspect ratio of the nanorods, the longer wavelength absorption peak decreases and red shifts obviously, whereas the shorter wavelength absorption peak blue shifts slightly.

Key words

nanorods surface plasmon resonance absorption spectrum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Thearith Ung, Luis M Liz-Marzan, Paul Mulvaney. Gold Nanoparticle Thin Films.Colloids and Surfaces A, 2002, 202: 119CrossRefGoogle Scholar
  2. 2.
    ZHU Jian, WANG Yong-Chang, LU Yi-min. Electrochemical Synthesis and Optical Properties of Silver-coated Gold Nanoshells.Journal of Wuhan University of Technology—Mater. Sci. Ed., To be publishedGoogle Scholar
  3. 3.
    ZHANG Zhao-yan, LI Qian-tao. The Structure and Emission Properties of SiO2 Nanometer Film Containing Ag.Journal of Wuhan University of Technology—Mater. Sci. Ed., 2001, 16 (2): 34Google Scholar
  4. 4.
    WEI Jian-hong, ZHAO Xiu-jian, XIAO Jing. Preparation and Properties of Ag-TiO2 Thin Films on Glass Substrates.Journal of Wuhan University of Technology—Mater. Sci. Ed., 2002, 17 (3): 21CrossRefGoogle Scholar
  5. 5.
    YU Hai-hu, JIANG De-sheng. Gold Nanoparticulate Thin Films Fabricated by the Electrostatic Self-assembly Process.Journal of Wuhan University of Technology—Mater. Sci. Ed., 2002, 17 (1): 38Google Scholar
  6. 6.
    Cepak VM, Martin C R. Preparation and Stability of Template-Synthesized Metal Nanorod Sols in Organic Solvents.J. Phys. Chem. B, 1998, 102: 9985CrossRefGoogle Scholar
  7. 7.
    Van der Zande B M I, Bohmer M R, Fokkink L G J. Aqueous Gold Sols of Rod-Shaped Particles.J. Phys. Chem. B, 1997, 101: 852CrossRefGoogle Scholar
  8. 8.
    Yu-Ying Yu, Ser-Sing Chang, Chien-Liang Lee, and C R Chris Wang. Gold Nanorods: Electrochemical Synthesis and Optical Properties.J. Phys. Chem. B, 1997, 101(34): 6661CrossRefGoogle Scholar
  9. 9.
    Sunghun Cho, Soonil Lee, Soo-ghee Oh. Optical Properties of Au Nanocluster Embedded Dielectric Films.Thin Solid Films, 2000, 377: 97CrossRefGoogle Scholar
  10. 10.
    Craig F Bohren.Absorption and Scattering of Light by Small Particles. New York: A Wiley Interscience Publication, 1983: 351Google Scholar
  11. 11.
    Gabor L Hornyak, Charles J Patrissi, and Charles R Martin. Fabrication, Characterization, and Optical Properties of Gold Nanoparticle/Porous Alumina Composites: The Nonscattering Maxwell-Garnett Limit.J. Phys. Chem. B, 1997, 101, 1548CrossRefGoogle Scholar
  12. 12.
    QI Hang, ZHU Tao, LIU Zhong-fan. Gold Nanorods Sol Prepared by Electrolysis.Phys. Chim. Sin., 2000, 16(10): 956Google Scholar
  13. 13.
    LI Xu, LI Lihui. Research on the Direction of the Polarization Field Strength Internal the Dielectric Ellipsoid and of the External Field.Journal of Capital Normal University, 2003, 24(2): 33Google Scholar
  14. 14.
    Richard D Averitt, Sarah L Westcott, Naomi J Halas. Linear Optical Properties of Gold Nanoshells.J. Opt. Soc. Am. B, 1999, 16(10): 1824Google Scholar

Copyright information

© Editorial Office of Journal of Wuhan University of Technology-Materials Science Edition 2003

Authors and Affiliations

  • Zhu Jian
    • 2
  • Wang Yong-Chang
    • 2
  • Yan Shi-Nong
    • 2
  • Lu Yi-min
    • 1
  1. 1.Cardiff UniversityUK
  2. 2.Institute of Modern Physics, School of ScienceXi'an Jiaotong UniversityXi'anChina

Personalised recommendations