Annali dell’Università di Ferrara

, Volume 47, Issue 1, pp 285–296 | Cite as

The modified jump problem for the Helmholtz equation

  • P. A. Krutitskii


The boundary value problem for the Helmholtz equation outside several cuts in a plane is studied. The 2 boundary conditions are given on the cuts. One of them specifies the jump of the unkown function. Another one contain the jump of the normal derivative of an unknown function and a limit value of this function on the cuts. The unique solution of this problem is reduced to the uniquely solvable Fredholm equation of the second kind and index zero by means of single layer and angular potentials. The singularities at the ends of the cuts are investigated.


Case Condition Neumann Problem Normal Derivative Fredholm Integral Equation Homogeneous Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Nel presente lavoro si studia il problema al contorno per l'equazione di Helmholtz all'esterno di più tagli nel piano. Le due condizioni al contorno sono assegnate sui tagli. Una di queste prescrive il salto della funzione incognita, l'altra contiene il salto della derivata normale di una funzione incognita ed un valore limite di questa funzione sui tagli. La soluzione univoca di questo problema è ricondotta all'equazione di Fredholm di seconda specie ed indice zero, univocamente risolubiles, per mezzo dei potenziali di singolo strato ed angolare. Si studiano, inoltre, le singolarità agli estremi dei tagli.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. Wolfe,An existence theorem for the reduced wave equation, Proc. Amer. Math. Soc.,21 (1969), pp. 663–666.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    M. Durand,Layer potentials and boundary value problems for the Helmoholtz equation in the compliment of a thin obstacle, Math. Meth. Appl. Sci.11 (1969), pp. 185–213.Google Scholar
  3. [3]
    I. K. Lifanov,Singular integral equations and discrete vortices, VSP, Zeist, 1996.MATHGoogle Scholar
  4. [4]
    P. A. Krutitskii,Dirichlet problem for the Helmholtz equation outside cuts in a plane, Comp. Math. Math. Phys.,34 (1994), pp. 1073–1090.MATHMathSciNetGoogle Scholar
  5. [5]
    P. A. Krutitskii,Neumann problem for the Helmholtz equation outside cuts in a plane, Comp. Math. Math. Phys.,34 (1994), pp. 1421–1431.MATHMathSciNetGoogle Scholar
  6. [6]
    P. A. Krutitskii,The Dirichlet problem for the 2-D Helmholtz equation in a multiply connected domain with cuts. ZAMM,77, No. 12 (1997) 883–890.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    P. A. Krutitskii,The Neumann problem for the 2-D Helmholtz equation in a multiply connected domain with cuts, Zeitschrift für Analysis und ihre Anwendungen,16 (1997), pp. 349–361.MATHMathSciNetGoogle Scholar
  8. [8]
    P. A. Krutitskii,Wave propagation in a 2-D external domains with cuts, Applicable Analysis,62 (1996), pp. 297–309.CrossRefMathSciNetGoogle Scholar
  9. [9]
    P. A. Krutitskii,The Neumann problem on wave propagation in a 2-D external domain with cuts. J. Math. Kyoto Univ.,38, No. 3 (1998), pp. 439–452.MATHMathSciNetGoogle Scholar
  10. [10]
    S. A. Gabov,An angular potential and its applications, Math. U.S.S.R. Sbornik,32 (1977), pp. 423–436.CrossRefMathSciNetGoogle Scholar
  11. [11]
    R. H. TorresG. V. Welland,The Helmholtz equation and transmission problems with Lipschitz interfaces, Indiana Univ. Math. J.,42 (1993), No. 4, pp. 1457–1485.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    T. V. Petersdoff,Boundary integral equations for mixed Dirichlet, Neumann and transmission problems, Math. Meth. Appl. Sci.,11 (1989), pp. 185–213.CrossRefGoogle Scholar
  13. [13]
    P. Wilde,Transmission problems for the vector Helmholtz equation, Proc. Roy. Soc. Edinburgh,105 A (1987), pp. 61–76.MathSciNetGoogle Scholar
  14. [14]
    D. ColtonR. Kress,Integral equation methods in scattering theory, Wiley, N.Y., 1983.MATHGoogle Scholar
  15. [15]
    C. J. S. AlvesT. Ha-Duong,On inverse scattering by screens, Inverse Problems,13 (1995), pp. 1161–1176.CrossRefMathSciNetGoogle Scholar
  16. [16]
    C. J. S. AlvesT. Ha-Duong,Inverse scattering for elastic plane cracks, Inverse Problems,15 (1999), pp. 91–97.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    A. FriedmanM. Vogelius,Determining cracks from boundary measurements, Indiana Univ. Math. J.,38 (1989), pp. 497–525.MATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    V. S. Vladimirov,Equations of Mathematical Physics, Marcel Dekkers, N.Y., 1971.Google Scholar
  19. [19]
    A. F. NikiforovV. B. Uvarov,Special functions of mathematical physics, Birkhäuser, Basel, 1988.MATHGoogle Scholar
  20. [20]
    P. A. Krutitskii,The jump problem for the Helmholtz equation and singularities at the edges, Appl. Math. Letters,13 (2000), pp. 71–76.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Università degli Studi di Ferrara 2001

Authors and Affiliations

  • P. A. Krutitskii
    • 1
  1. 1.Dept. of Mathematics, Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations