The area within a curve

  • M. N. Huxley


The area of a simple closed convex curve can be estimated in terms of the number of points of a square lattice that lie within the curve. We obtain the usual error bound without integration using a form of the Hardy—Littlewood—Ramanujan circle method, and also present simple estimates for the mean square error.


Estimation of area lattice points 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bombieri E and Iwaniec H, On the order of (1/2 + it),Ann. Scuola Normale Superiore di Pisa cl. Sci. (4)13(1986)449–472MATHMathSciNetGoogle Scholar
  2. [2]
    Hardy G H and Ramanujan S, Asymptotic formulae in combinatory analysis,Proc. London Math. Soc. 217 (1918) 75–115CrossRefGoogle Scholar
  3. [3]
    Huxley M N and Watt N, Exponential sums and the Riemann zeta functionProc. London Math. Soc. (to appear)Google Scholar
  4. [4]
    Huxley M N, Exponential sums and lattice points (to appear)Google Scholar
  5. [5]
    Iwaniec H and Mozzochi C J, On the circle and divisor problems (to appear)Google Scholar
  6. [6]
    Jutila M,Lectures on a method in the theory of exponential sums (Bombay: Tata Institute of Fundamental Research) (1987)MATHGoogle Scholar
  7. [7]
    Landau E,Vorlesunaen über Zahlentheorie (Leipzig: Hirzel) Band 2 (1927)Google Scholar
  8. [8]
    Sierpin’ski W, A certain problem in the calculus of asymptotic functions,Prace Mat.-Fiz. 17 (1906) 77–118 andOeuvres Choisies 73–108Google Scholar
  9. [9]
    Swinnerton-Dyer H P F, The number of lattice points on a convex curve,J. Number Theory 6 (1974) 128–135MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Vinogradov I M,An introduction to the theory of numbers (Oxford: Pergamon) (1955)Google Scholar

Copyright information

© Indian Academy of Sciences 1987

Authors and Affiliations

  • M. N. Huxley
    • 1
  1. 1.Department of Pure MathematicsUniversity College, CardiffCardiffUK

Personalised recommendations