Small fractional parts of additive forms

  • R. J. Cook


Letf(x)=θ1 x 1 k +...+θ s x s k be an additive form with real coefficients, and ∥α∥ = min {¦α-u¦:uεℤ} denote the distance fromα to the nearest integer. We show that ifθ 1,…,θ s , are algebraic ands = 4k then there are integersx 1,…,x s , satisfying l ≤x 1,≤ N and ∥f(x)∥ ≤ N E , withE = − 1 + 2/e.

Whens = λk, 1 ≤λ ≤ 2k, the exponentE may be replaced byλE/4, and if we drop the condition thatθ 1,…,θ s , be algebraic then the result holds for almost all values of θεℝ s . Whenk ≥ 6 is small a better exponent is obtained using Heath-Brown’s version of Weyl’s estimate.


Additive forms Heath-Brown’s version Weyl’s estimate fractional parts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Baker R C,Diophantine Inequalities.London Math. Soc. Monographs N.S.I. (Oxford: Science Publishers) (1986)Google Scholar
  2. [2]
    Cook R J, On the fractional parts of a set of points,Mathematika 19 (1972) 63–68MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Cook R J, The fractional parts of an additive form,Proc. Camb. Philos. Soc. 72 (1972) 209–212MATHCrossRefGoogle Scholar
  4. [4]
    Danicic I,Contributions to number theory, Ph.D. Thesis (Univ. London 1957)Google Scholar
  5. [5]
    Davenport H, On a theorem of Heilbronn,Q. J. Math. Oxford 18 (1967) 339–344MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Heath-Brown D R, Weyl’s inequality, Hua’s inequality, and Waring’s problem,J. London Math. Soc. 38 (1988) 216–230MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Heath-Brown D R, The fractional parts ofαn k.Mathematika 35 (1988) 28–37MATHMathSciNetGoogle Scholar
  8. [8]
    Heilbronn H, On the distribution of the sequencen 2 θ (mod 1).Q. J. Math. Oxford 19 (1948) 249–256CrossRefMathSciNetGoogle Scholar
  9. [9]
    Karatsuba A A, On the functionG(n) in Waring’s problem.Izv. Akad. Nauk. SSSR, Ser. Mat. 49 (1985) 935–947MATHMathSciNetGoogle Scholar
  10. [10]
    Ya A Khinchin,Continued fractions (Chicago: University Press) (1964)MATHGoogle Scholar
  11. [11]
    Roth K F, Rational approximations to algebraic numbers,Mathematika 2 (1955) 1–20MathSciNetGoogle Scholar
  12. [12]
    Schmidt W M,Small fractional parts of polynomials, CBMS Regional Conferences in Mathematics 32 (American Math. Soc 1977)Google Scholar
  13. [13]
    Weyl H, Über die Gleichverteilung von Zahlen mod Eins.Math. Ann. 77 (1916) 313–352CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Indian Academy of Sciences 1989

Authors and Affiliations

  • R. J. Cook
    • 1
  1. 1.Department of Pure MathematicsUniversity of SheffieldSheffieldEngland

Personalised recommendations