An integer arithmetic method to compute generalized matrix inverse and solve linear equations exactly

  • S. K. Sen
  • A. A. Shamim


An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.


Exact computation integer arthematic generalized matrix inverse linear equations Smith diagonai form 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Adegbeyeni E O and Krishnamurthy E V 1977Int. J. Systems Sci. 8 1181MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Ben-Israel A and Greville T N E 1974Generalized Inverses: theory and applications (New York: Wiley-Interscience) p 94MATHGoogle Scholar
  3. [3]
    Bowman V J and Burdet C A 1974SIAM J. Appl. Math. 26 120CrossRefMathSciNetGoogle Scholar
  4. [4]
    Hurt M F and Waid C 1970SIAM J. Appl. Math. 19 547MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Krishnamurthy E V and Sen S K 1976Computer-Based numerical Algorithms, (New Delhi: East-West)Google Scholar
  6. [6]
    Rao T M, Subramanian K and Krishnamurthy E V 1976SIAM J. Numer. Anal. 13 155MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Sen S K and Shamim A A 1978J. Indian Inst. Sci. 60 111MATHMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1978

Authors and Affiliations

  • S. K. Sen
    • 1
  • A. A. Shamim
    • 1
  1. 1.Computer CentreIndian Institute of ScienceBangalore

Personalised recommendations