Proceedings - Mathematical Sciences

, Volume 107, Issue 2, pp 155–161 | Cite as

Bredon cohomology of cyclic geometric realization ofG-cyclic sets



We define equivariant cyclic and Hochschild cohomology modules of a cyclic objectX in the category ofG-sets and relate them with the Bredon cohomologies of the cyclic geometric realization ¦X¦cy.


Cyclic cohomology Hochschild cohomology cyclic set equivariant cohomology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bredon G E,Equivariant cohomology theories, Lecture notes in Math., Springer-Verlag (1967) vol. 34Google Scholar
  2. [2]
    Elmendorf A D, System of fixed point sets,Trans. Am. Soc. 277 (1983) 275–284MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    Goodwillie T G, Cyclic homology, derivations, and the free loop space,Topology 24 (1985) 187–215MathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    Illman S, Equivariant singular homology and cohomology I,Mem. Am. Math. Soc. 156 (1975)Google Scholar
  5. [5]
    Jones J D S, Cyclic homology and equivariant homology,Invent. Math. 87 (1987) 403–423MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    Loday J L,Cyclic homology, Springer-Verlag (1992)Google Scholar
  7. [7]
    Quillen D,Higher algebraic K-theory I, Lecture notes in Math.,341 (1973) 85–147MathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1997

Authors and Affiliations

  1. 1.School of MathematicsSPIC Science FoundationMadrasIndia

Personalised recommendations