Free and forced convection flow in a rotating channel bounded below by a permeable bed

  • Mahendra Mohan
  • Kaushal Kumar Srivastava


The steady flow in a parallel plate channel rotating with an angular velocity Ω and bounded below by a permeable bed is analysed under the effect of buoyancy force. On the porous bed the boundary condition of Beavers and Joseph is applied and an exact solution of the governing equations is found. The solution in dimensionless form contains four parameters: The permeability parameterσ 2, the Grashof numberG, the rotation parameterK 2 and a dimensionless constantα. The effects of these parameters, specially,σ 2, G andK 2, on the slip velocities and velocity distributions are studied. For largeK 2, there arise thin boundary layers on the walls of the channel.


Free convection forced convection permeable bed rotating channel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Barua S N 1954Proc. R. Soc. A227 133MathSciNetGoogle Scholar
  2. [2]
    Benton G S 1956J. Appl. Mech. 23 123MATHGoogle Scholar
  3. [3]
    Benton G S and Boyer D 1966J. Fluid Mech. 26 69CrossRefGoogle Scholar
  4. [4]
    Beavers G S and Joseph D D 1967J. Fluid Mech. 30 197CrossRefGoogle Scholar
  5. [5]
    Beaverset al 1970J. Basic Engg. ASME 92 843Google Scholar
  6. [6]
    Brinkman H C 1947Appl. Sci. Res. A1 27Google Scholar
  7. [7]
    Gershuni G Z and Zhukhovitskii E M 1958Sov. Phys. JETP 34 461MathSciNetGoogle Scholar
  8. [8]
    Gill W N and Casai E D 1962AIChE J. 8 513CrossRefGoogle Scholar
  9. [9]
    Greenspan H P 1969The Theory of Rotating Fluids (Cambridge: University Press)Google Scholar
  10. [10]
    Gupta A S 1969Z. Ange. Math. Phys. 20 Fasc 4 506MATHCrossRefGoogle Scholar
  11. [11]
    Gupta P S 1974Z. Ange. Math. Mech. 54 359CrossRefMATHGoogle Scholar
  12. [12]
    Mohan M 1977Proc. Indian Acad. Sci. A85 383Google Scholar
  13. [13]
    Nanda R S and Mohanty H K 1970Appl. Sci. Res. 24 65Google Scholar
  14. [14]
    Poots G 1961Int. J. Heat Mass Transfer 3 108CrossRefGoogle Scholar
  15. [15]
    Rajasekhara B M 1972 Ph.D. Thesis Bangalore University, IndiaGoogle Scholar
  16. [16]
    Singer R M 1966Appl. Sci. Res. B12 375Google Scholar
  17. [17]
    Vidyanidhi V and Nigam S D 1967J. Math. Phys. Sci. 1 85MATHGoogle Scholar
  18. [18]
    Yu C P 1965AIAA J 3 1184MATHCrossRefGoogle Scholar
  19. [19]
    Yu C P and Yang H K 1969Appl. Sci. Res. 20 16MATHCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1978

Authors and Affiliations

  • Mahendra Mohan
    • 1
  • Kaushal Kumar Srivastava
    • 1
  1. 1.Departments of Applied Mathematics and Chemical Engineering, Institute of TechnologyBanaras Hindu UniversityVaranasi

Personalised recommendations