A theorem of the Wiener—Tauberian type forL 1(H n)

  • Rama Rawat


The Heisenberg motion groupHM(n), which is a semi-direct product of the Heisenberg group Hn and the unitary group U(n), acts on Hn in a natural way. Here we prove a Wiener-Tauberian theorem for L1 (Hn) with this HM(n)-action on Hn i.e. we give conditions on the “group theoretic” Fourier transform of a functionf in L1 (Hn) in order that the linear span ofgf : g∈HM(n) is dense in L1(Hn), wheregf(z, t) =f(g·(z, t)), forg ∈ HM(n), (z,t)∈Hn.


Heisenberg group Gelfand pairs class-1 representations elementary spherical functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Agranovsky M, Berenstein C, Chang D C and Pascuas D, Injectivity of the Pompeiu transform in the Heisenberg group,J. Anal. Math. 63 (1994) 131–173MATHMathSciNetGoogle Scholar
  2. [2]
    Benson C, Jenkins J and Ratcliff G, On Gelfand pairs associated with solvable Lie groups,Trans. Am. Math. Soc. 321 (1990) 85–116MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Benson C, Jenkins J and Ratcliff G, Bounded K-spherical functions on Heisenberg groups,J. Funct. Anal. 105 (1992) 409–443MATHMathSciNetCrossRefGoogle Scholar
  4. [4]
    Benson C, Jenkins J, Lipsman R L and Ratcliff G, The moment map for a multiplicity free action,Bull. Am. Math. Soc. 31 (1994) 185–190MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Ben Natan Y, Benyamini Y, Hedenmalm H and Weit Y, Wiener’s Tauberian theorem in L1(G ∥ K) and harmonic functions in the unit disk,Bull. Am. Math. Soc. 32 (1995) 43–49MATHCrossRefGoogle Scholar
  6. [6]
    Brown L, Schreiber B M and Taylor B A, Spectral synthesis and the Pompeiu problem,Ann. Inst. Fourier (Grenoble) 23 (1973) 125–154MathSciNetGoogle Scholar
  7. [7]
    Folland G, Harmonic analysis in phase space,Ann. Math. Stud. (1989) (Princeton: Princeton Univ. Press)Google Scholar
  8. [8]
    Gangolli R, Spherical functions on semisimple Lie groups, in: Symmetric Spaces (eds) W Boothby and G Weiss (1972) (New York: Marcel Dekker Inc.)Google Scholar
  9. [9]
    Helgason S,Groups and Geometric Analysis (1984) (New York: Academic Press)MATHGoogle Scholar
  10. [10]
    Hulanicki A and Ricci F, A Tauberian theorem and tangential convergence for boundary harmonic functions on balls in Cn,Invent. Math. 62 (1980) 325–331MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Leptin H, On group algebras of nilpotent Lie groups,Stud. Math. 47 (1973) 37–49MATHMathSciNetGoogle Scholar
  12. [12]
    Rawat R and Sitaram A, The injectivity of the Pompeiu transform and Lp analogues of the Wiener-Tauberian theorem,Isr. J. Math. 91 (1995) 307–316MATHMathSciNetCrossRefGoogle Scholar
  13. [13]
    Rudin W,Functional Analysis (1973) (New York: McGraw-Hill)MATHGoogle Scholar
  14. [14]
    Strichartz R, Lp harmonic analysis and radon transforms on the Heisenberg group,J. Funct. Anal. 96 (1991) 350–406MATHMathSciNetCrossRefGoogle Scholar
  15. [15]
    Thangavelu S, Lectures on Hermite and Laguerre expansions,Math. Notes (1993) (Princeton: Princeton Univ. Press)Google Scholar
  16. [16]
    Weit Y, On spectral analysis in locally compact motion groups,J. Funct. Anal. 40 (1981) 45–53MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1996

Authors and Affiliations

  • Rama Rawat
    • 1
  1. 1.Statistics and Mathematics UnitIndian Statistical InstituteBangaloreIndia

Personalised recommendations