Skip to main content
Log in

Compositeness and elementarity in theories with crossing

Сложность и элементарность в теориях с кроссингом

  • Published:
Il Nuovo Cimento A (1965-1970)

Summary

It is shown that in anS-matrix with crossing, criteria of compositeness based on the vanishing of renormalization constants can be applied in a consistent way, allowing us to study the crucial dependence of the left-hand singularities on the degree of elementarity of the exchanged particles. Then, using both field theory andS-matrix approaches, we solve a paradox about an «impossibility», stated several times in the literature, of distinguishing between elementarity and compositeness of two baryons in two crossed channels: on the contrary, we exhibit different physical interpretations for distinct domains of the parameters values, at the boundary of which the amplitude undergoes critical change. We discriminate the various cases where each particle is either elementary or composite; when only one of these two baryons is («chain» or «ladder») composite, its mass is always the heaviest one. Next, we discuss and compare in our explicit model theZ=0, strong coupling limit and reciprocal bootstrap approaches, together with a discussion of approximations currently used in theN/D calculations. The vanishing of bothZ, while keeping finite the coupling constants, implies a characteristic symmetry in the theory.

Riassunto

Si dimostra che, in una matriceS con incrocio, si possono applicare in modo coerente criteri di composizione basati sull’annullarsi delle costanti di rinormalizzazione, permettendoci di studiare la cruciale dipendenza delle singolarità di sinistra dal grado di elementarità delle particelle scambiate. Poi, usando sia la teoria dei campi che gli approcci con la matriceS, si risolve un paradosso su una «impossibilità», affermata parecchie volte nella letteratura sull’argomento, di distinguere fra l’elementarità e la composizione di due barioni in due canali incrociati: al contrario si offrono differenti interpretazioni fisiche per distinti domini dei valori dei parametri, ai cui bordi le ampiezze subiscono un cambiamento critico. Si discriminano i vari casi in cui ciascuna particella è o elementare o composta; quando uno solo di questi due barioni è composto («a catena» o «a scalini»), la sua massa è sempre quella maggiore. Poi si discutono e si confrontano nel nostro modello esplicito gli approcci del limite dell’accoppiamento forte,Z=0, e del bootstrap reciproco, e si discutono anche le approssimazioni correntemente usate nei calcoli diN/D. L’annullarsi di entrambi gliZ, mentre si mantengono finite le costanti di accoppiamento, implica una caratteristica simmetria della teoria.

Резюме

Показывается, что вS-матрице с кроссингом критерий сложности, основанный на обращении в нуль перенормировочных констант, может быть применен последовательным образом, позволяюшим нам изучить критическую зависимость левосторонних сингулярностей от степени элементарности элементарных частиц. Затем, используя и теорию поля и подходS-матрицы, мы разрешаем парадокс о «невозможности», отмеченной несколько раз в литературе, различения элементарности и сложности двух барионов в двух поперечных каналах: наоборот, мы указываем различные физические интерпретации для отдельных областей величин параметров, на границе которых амплитуда притерпевает критическое изменение. Мы различаем различные случаи, где каждая частица либо является элементарной, либо сложной: когда только один из этих двух барионов является («цепочным» или «лестничным») сложным, причем, его масса всегда является наибольшей. Затем мы обсуждаем и сравниваем в нашей точной моделиZ=0, предел сильной связи и приближения взаимного бутстрепа, вместе с обсужжением приближений, обычно используемых вN/D вычислениях. Обращение в нуль обоихZ, хотя константы связи остаются «конечными», означает характеристическую симметрию в теории.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Diu:Nuovo Cimento,28, 83 (1963);Qu’est-ce qu’une particule élémentaire (Paris, 1965); see in this connection:B. Jouvet andJ. P. Adam:Nuovo Cimento,29, 1275 (1963); and ref. (2).B. Jouvet:Lecture Notes in theProceedings of the Ninth Latin American School of Physics New York, 1968).

    Google Scholar 

  2. B. Jouvet:Lecture Notes in theProceedings of the Ninth Latin American School of Physics New York, 1968).

  3. F. E. Low:Nuovo Cimento,25, 678 (1962).

    Article  Google Scholar 

  4. H. J. Schnitzer:Nuovo Cimento,39, 727 (1965).

    Article  Google Scholar 

  5. P. P. Divakaran:Phys. Rev.,160, 1468 (1967).

    Article  ADS  Google Scholar 

  6. Or even in ref. (3), starting from both V and W elementary; but see in this connection the note (25).

    Article  Google Scholar 

  7. B. Jouvet:Nuovo Cimento,5, 1 (1957).

    Article  MathSciNet  Google Scholar 

  8. J. C. Houard andB. Jouvet:Nuovo Cimento,18, 466 (1960).

    Article  MathSciNet  Google Scholar 

  9. J. C. Houard:Nuovo Cimento,35, 194 (1965);Thèse, Paris (1965).

    Article  MathSciNet  Google Scholar 

  10. B. Jouvet andJ. C. Le Guillou:Nuovo Cimento,49 A, 677 (1967).

    Article  ADS  Google Scholar 

  11. J. C. Le Guillou:Nuovo Cimento,54 A, 362 (1968).

    Article  ADS  Google Scholar 

  12. J. C. Houard andJ. C. Le Guillou:Nuovo Cimento,44, 484 (1966).

    Article  ADS  Google Scholar 

  13. B. W. Lee, K. T. Mahanthappa, I. S. Gerstein andM. L. Whippman:Ann. of Phys.,28, 466 (1964).

    Article  ADS  Google Scholar 

  14. See for instanceT. Akiba, S. Saito andF. Takagi:Nuovo Cimento,39, 316 (1965);M. Ida:Progr. Theor. Phys.,34, 92, 990 (1965).

    Article  ADS  Google Scholar 

  15. M. T. Vaughn, R. Aaron andR. D. Amado:Phys. Rev.,124, 1258 (1961).

    Article  ADS  Google Scholar 

  16. S. Saito andT. Akiba:Progr. Theor. Phys.,33, 307 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  17. Y. S. Jin andK. Kang:Phys. Rev.,146, 1058 (1966).

    Article  ADS  Google Scholar 

  18. T. Cook, C. G. Geobel andB. Sakita:Phys. Rev. Lett.,15, 35 (1965);V. Singh andB. Udgaonkar:Phys. Rev.,149, 1164 (1966).

    Article  ADS  MathSciNet  Google Scholar 

  19. G. F. Chew:Phys. Rev. Lett.,9, 233 (1962).

    Article  ADS  Google Scholar 

  20. F. E. Low:Phys. Rev. Lett.,9, 277 (1962).

    Article  ADS  Google Scholar 

  21. L. Castillejo, R. H. Dalitz andF. J. Dyson:Phys. Rev.,101, 453 (1956).

    Article  ADS  Google Scholar 

  22. Let us note that if in slightly different modelsJ(z) is for some reason no longer a function ofz 2, the boundary of the two domains, being always given byg(z)=c, corresponds then to Δ′=aΔ for somea.

  23. A. Jacquemin:Nuovo Cimento,44A, 390 (1966); and also ref. (14). See for instanceT. Akiba, S. Saito andF. Takagi:Nuovo Cimento,39, 316, (1965).

    Article  ADS  Google Scholar 

  24. Also (cf. note (6)). it is now evident that the conditions for the indistinguish-ability of these 2-parameter amplitudes from the amplitude with both V and W elementary, are not identically satisfied, contrarily to a statement in ref. (3)F. E. Low:Nuovo Cimento,25, 678 (1962). Indeed, these conditions (corresponding to our eqs. (49), which are in ref. (3)F. E. Low:Nuovo Cimento,25, 678 (1962), called the «correct» residues) express the ladder compositeness of either W inT [2] or V inT [2′].

    Article  Google Scholar 

  25. Let us note that it is obviously the variablez=w k , homogeneous to a mass, which comes into the propagator of the static particle, and not its square, as used in ref. (17), which leads there to explicit, but incorrect, propagator and renormalization constant.

    Article  ADS  Google Scholar 

  26. Cf. for composite particles:E. Tirapegui:Nuovo Cimento,47 A, 400 (1967).

    Article  ADS  Google Scholar 

  27. Let us note that one finds in ref. (16), about an amplitude similar toT [1] the incorrect result ofQ Δ infinite whatever be the cut-off. However, we shall see thatQ Δ may become finite in this case, without contradiction withZ v=0.

    Article  ADS  MathSciNet  Google Scholar 

  28. See:R. L. Warnock:Phys. Rev.,131, 1320 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  29. We shall here consider, for less complexity, that there are no supplementary resonances in the channels; the cases when these resonances are present, are to be placed in the frame of the particular concepts which arise due to the presence of more than on particle with the same quantum numbers, as shown in ref. (12).

    Article  ADS  Google Scholar 

  30. Let us note that the limit case with no cut-off functioni.e. U(K)=1 (case in which the amplitude is written for instance in (4) ; the argument leading to the mentioned «ambiguity» being anyway evidently independent of the cut-offs) is quite singular in the sense that it corresponds to renormalization constants which areidentically zero (and to separately divergent integrals inH(z) for each cut), while the proof of Sect.4 is formally identical. Indeed, the Nθ channel phase shift decreases then from 0 to σ, forz varying from 1 to infinity, with: π/2<σ<0 forb>0 where V is elementary; σ=−π/2 forb=0 where V and W are composite; and σ<−π/2 forb<0 where V is composite. The quantityQ of (59) is then always infinite, and thereforeZ Δ≡0, forany value ofg 2, even a very small one. It is moreover usual in the literature (38)K. Huang andF. E. Fow:Journ. Math. Phys. 6, 795 1965. to consider in static models that, even ifU=1 in the Hamiltonian, the phase space is to be weighted in the elastic approximation by a function representing the inelastic processes; moreover this pathological case is perhaps also originated (33)J. M. Levy-Leblond:Comm. Math. Phys.,4, 157 (1967), by the introduction of relativistic mesons in a static model.

    Article  Google Scholar 

  31. J. M. Levy-Leblond:Comm. Math. Phys.,4, 157 (1967).

    Article  ADS  MathSciNet  Google Scholar 

  32. A. Chevallier andG. Rideau:Nuovo Cimento,10, 228 (1958);Y. Matsumoto Progr. Theor. Phys.,37, 1034 (1967).

    Article  Google Scholar 

  33. R. D. Amado:Phys. Rev.,122, 696 (1961);T. Muta:Progr. Theor. Phys.,33, 666 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  34. N. G. Desphande:Phys. Rev.,159, 1342 (1967).

    Article  ADS  Google Scholar 

  35. F. E. Low:XIII International Conference (Berkeley, 1967), p. 244.

  36. K. Huang andF. E. Low:Journ. Math. Phys.,6, 795 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  37. B. Diu: preprints TH. 216 and TH 217, Orsay, Sept. 1967.

  38. V. de Alfaro, S. Fubini, G. Furlan andC. Rossetti:Phys. Lett.,21, 576, (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Traduzione a cura della Redazione.

Переведено редакцией.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le Guillou, J.C. Compositeness and elementarity in theories with crossing. Nuovo Cimento A (1965-1970) 58, 553–588 (1968). https://doi.org/10.1007/BF02837656

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02837656

Keywords

Navigation