Skip to main content
Log in

Shape preserving approximation using least squares splines

  • Published:
Approximation Theory and its Applications

Abstract

Least squares polynomial splines are an effective tool for data fitting, but they may fail to preserve essential properties of the underlying function, such as monotonicity or convexity. The shape restrictions are translated into linear inequality conditions on spline coefficients. The basis functions are selected in such a way that these conditions take a simple form, and the problem becomes non-negative least squares problem, for which effecitive and robust methods of solution exist. Multidimensional monotone approximation is achieved by using tensor-product splines with the appropriate restrictions. Additional inter polation conditions can also be introduced. The conversion formulas to traditional B-spline representation are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson, L. E. and Ivert, P. A., Constrained Interpolants with Minimal W kp Norm, J. Approx. Theory 49(1987), 283–288.

    MathSciNet  MATH  Google Scholar 

  2. Andersson, L. E., Elfving, T., An Algorithm for Constrained Interpolation, SIAM J. Scient. Stat. Comput., 8(1987), 1012–1025.

    MathSciNet  MATH  Google Scholar 

  3. Andersson, L. E. and Elfving, T., Interpolation and Approximation by Monotone Cubic Splines, J. Approx. Theory, 66(1991), 302–333.

    MathSciNet  MATH  Google Scholar 

  4. Armstrong, R. D. and Frome, E. L., A Branch-and-Bound Solution of a Restricted Least Squares Problem, Technometrics, 18(1976), 447–450.

    MathSciNet  MATH  Google Scholar 

  5. Ateshian, G. A., A B-Spline Least-Squares Surface-Fitting Method for Articular Surfaces of Diarthrodial Joints, J. Biomed. Eng., 115(1993), 366–373.

    Google Scholar 

  6. Beatson, R. K. and Wolkowicz, H., Post-Processing Piecewise Cubics for Monotonicity, SIAM J. Numer. Anal., 26(1989), 480–502.

    MathSciNet  MATH  Google Scholar 

  7. Beatson, R. K. and Ziegler, Z., Monotonicity Preserving Surface Interpolation, SIAM J. Numer. Anal., 22(1985), 401–411.

    MathSciNet  MATH  Google Scholar 

  8. Beliakov, G., Definition of General Aggregation Operators Through similarity Relations, Fuzzy Sets and Systems, 14(2000), 437–453.

    MathSciNet  MATH  Google Scholar 

  9. Beliakov, G., Aggregation Operators as Similarity Relations, in: Information, Uncertainty, Fusion, eds. R. Yager, B. Bouchon-Meunier and L. Zadeh, Kluwer, Boston, 1999, 331–342.

    Google Scholar 

  10. Boor, de C., A Practical Guide to Splines, Springer, Berlin-New York, 1978.

    MATH  Google Scholar 

  11. Carlson, R. E. and Fritsch, F. N., Monotone Piecewise Bicubic Interpolation, SIAM J. Numer. Anal., 22(1985), 386–400.

    MathSciNet  MATH  Google Scholar 

  12. Carnicer, J. M. and Dahmen, W., Convexity Preserving Interpolation and Powell-Sabin Elements, Comp. Aided Geom. Design. 9(1992), 279–289.

    MathSciNet  MATH  Google Scholar 

  13. Clark, D., An Algorithm for Solving the Restricted Least Squares problem. J. Austral. Math. Soc., 21(1980), (Series B), 345–356.

    MathSciNet  MATH  Google Scholar 

  14. Clark, D. and Osborne, M., On Linear and Interval Least-Squares problems. IMA J. Numer. Anal., 8(1988), 23–36.

    MathSciNet  MATH  Google Scholar 

  15. Constantini P. and Fontanella, F., Shape-Preserving Bivariate Interpolation. SIAM J. Numer. Anal., 22(1985), 488–506.

    MathSciNet  MATH  Google Scholar 

  16. Dierckx, P., Curve and Surface Fitting with Splines, Clarendon Press, Oxford, 1995.

    MATH  Google Scholar 

  17. Dongarra, J. J. and Grosse, E., Distribution of Mathematical Software via Electronic Mail, Comm. ACM 30(1987), 403–440.

    Google Scholar 

  18. Elfving T. and Andersson, L. E.. An Algorithm for Computing Constrained Smoothing Spline Functions. Numer. Math., 52(1989), 583–595.

    MathSciNet  MATH  Google Scholar 

  19. Eubank, R. L., Spline Smoothing and Nonparametric Regression, Marcel Dekker Inc, New York, 1988.

    MATH  Google Scholar 

  20. Fredenhagen, S., Oberle, H. J. and Opfer, G., On the Construction of Optimal Monotone Cubic Spline Interpolations, J. Approx. Theory, 96 (1999), 182–201.

    MathSciNet  MATH  Google Scholar 

  21. Greiner, H., A Survey on Univariate Data Interpolation and Approximation by Splines of Given Shape, Math. Comp. Modelling. 15(1991), 97–106.

    MathSciNet  MATH  Google Scholar 

  22. Hanson, R. J. and Haskell, K. H., Algorithm 587. Two Algorithms for the Linearly Constrained Least Squares Problem. ACM Trans. Math. Software, 8(1982), 323–333.

    MATH  Google Scholar 

  23. Haskell, K. H. and Hanson, R. J., An Algorithm for Linear Least Squares Problems with Equality and Nonnegativity Constraints. Math. Progr., 21(1981), 98–118.

    MathSciNet  MATH  Google Scholar 

  24. He, X. and Shi, P., Monotone B-Spline Smoothing, J. Am. Stat. Ass., 93(1998), 643–650.

    MathSciNet  MATH  Google Scholar 

  25. Hess, W. and Schmidt, J. W., Positive Quartic, Monotone Quintic C2-Spline Interpolation in One and Two Dimensions, J. Comp. Appl. Math., 55(1994), 51–67.

    MATH  Google Scholar 

  26. Iqbal, R., A One-Pass Algorithm for Shape-Preserving Quadratic Spline Interpolation, J. Scientific. Comp., 7(1992), 359–376.

    MathSciNet  MATH  Google Scholar 

  27. Juttler, B., Surface Fitting Using Convex Tensor-Product Splines. J. Comp. Appl. Math., 84 (1997), 23–44.

    MathSciNet  MATH  Google Scholar 

  28. Klir, G. and Folger, T., Fuzzy Sets, Uncertainty, and Information, Prentice Hall, Singapore, 1992.

    MATH  Google Scholar 

  29. Lawson, C. and Hanson, R., Solving Least Squares Problems, SIAM, Philadelphia, 1995.

    MATH  Google Scholar 

  30. Luenberger, D. G., Introduction to Linear and Nonlinear Programming, Addison-Wesley, Reading, Mass, 1973.

    MATH  Google Scholar 

  31. McAllister, D. F. and Roulier, J. A., An Algorithm for Computing Shape-Preserving Oscillatory Quadratic Spline, ACM Trans. Math. Software, 7(1981), 331–347.

    MathSciNet  MATH  Google Scholar 

  32. Ramsay, J. O., Monotone Regression Splines in Action (with Comments), Stat. Science, 3 (1988), 425–461.

    Google Scholar 

  33. Ruud, P. A., Restricted Least Squares Subject to Monotonicity and Concavity Constraints, Advances in Economics and Econometrics: Theory and Applincations, Vol. 3, Eds. D. M. Kreps and K. F. Wallis, Cambridge, 1997, 166–187.

    Google Scholar 

  34. Sapidis, N. S. and Daklis, P. D., An Algorithm for Constructing Convexity and Monotonicity Preserving Splines in Tension, Comp. Aided Geom. Des., 5(1988), 127–137.

    MathSciNet  MATH  Google Scholar 

  35. Schmidt, J. W. and Hess, W., An Always Successful Method in Univariate Convex C2 Interpolation, Numer. Math., 71(1995), 237–252.

    MathSciNet  MATH  Google Scholar 

  36. Schumaker, L. L., Spline Functions: Basic Theory, Wiley, New York, 1981.

    MATH  Google Scholar 

  37. Schumaker, L. L., On Shape-Preserving Quadratic Spline Interpolation, SIAM J. Numer. Anal., 20(1983), 854–864.

    MathSciNet  MATH  Google Scholar 

  38. Schweikert, D. G., An Interpolation Curve Using a Spline in Tension, J. Math. Phys., 45 (1966), 312–317.

    MathSciNet  MATH  Google Scholar 

  39. Spath, H., Exponential Spline Interpolation, Computing, 4(1969), 225–233.

    MathSciNet  MATH  Google Scholar 

  40. Turlach, B. A., Constrained Smoothing Splines Revisited, Statistics research report SR 008-97, Australian National University, 1997.

  41. Utreras, F. I., Smoothing Noisy Data Under Monotonicity Constraints. Existence, Characterization and Convergence Rates. Numer. Math., 47(1985), 611–626.

    MathSciNet  MATH  Google Scholar 

  42. Utreras, F. I. and Varas, J. L., Monotone Interpolation of Scattered Data inRi, Constr. Appr., 7(1991), 49–68.

    MATH  Google Scholar 

  43. Villalobos, M. and Wahba, G., Inequality-Constrained Multivariate Smoothing Splines with Application to the Estimation of Posterior Probabilities. J. Am. Stat. Assoc., 82(1987), 239–248.

    MathSciNet  MATH  Google Scholar 

  44. Willemans, K. and Dierckx, P., Smoothing Scattered Data with a Monotone Powell-Sabin Spline Surface, Numer. Algorithms, 12(1996), 215–232.

    MathSciNet  MATH  Google Scholar 

  45. Wright, I. W. and Wegman, E. J., Isotonic, Convex and Related Splines, Ann. Stat., 8 (1980), 1023–1035.

    MathSciNet  MATH  Google Scholar 

  46. Zimmermann, H. J., Fuzzy set Theory-and its Applications, Kluwer, Boston, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beliakov, G. Shape preserving approximation using least squares splines. Approx. Theory & its Appl. 16, 80–98 (2000). https://doi.org/10.1007/BF02837633

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02837633

Keywords

Navigation