Korovkin type approximation theorems on the space of continuously differentiable fnctions

  • Go Hirasawa
  • Keiji Izuchi
  • Seiji Watanabe


It is studied Korovkin type approximation theorems on C(1) ([0, 1]) the space of continuously differentiable functions on the unit interval. It is proved that test functions for which Korovkin type approximation theorems hold depending on norms of C(1) ([0, 1]).


Banach Space Linear Operator Bounded Linear Operator Unit Interval Separable Banach Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Altomare, F. and Baccaccio, C., On Korovkin-type Theorems in Spaces of Continuous Complex-valued Functions, Boll. Un. Mat. Ital. 6 (1982), No. 1, 75–86.Google Scholar
  2. [2]
    Altomare, F. and Campiti, M., Korovkin-Type Approximation Theorey and its Applications, de Gruyter, Berlin and New York, 1994.Google Scholar
  3. [3]
    Altomare, F. and Rosa, I., Approximation by Positive Operators in the SpaceC (p) ([a, b]), Anal. Numér. Théor. Approx., 18 (1989), 1–11.MATHMathSciNetGoogle Scholar
  4. [4]
    Berens, H. and Lorentz, G. G., Geometric Theory of Korovkin Sets, J. Approx. Theory, 15 (1975), 161–1189.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Brosowski, B., A Korovkin-type Theorem for Differentiable Functions, in Approximation TheoryI, ed. E. W. Cheney, Academic Press, 1980, 255–260.Google Scholar
  6. [6]
    Izuchi, K., Takagi, H. and Watanabe, S., Sequential BKW-Operators and Function Algebras, J. Approx. Theory, 85 (1996), 185–200.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Knoop, H. B. and Pottinger, P., Ein Satz vom Korovkin-Type für Ck-Räume, Math. Z., 148 (1976), 23–32.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Korovkin, P. P., On Convergence of Linear Operators in the Space of Continuous Functions, Dokl. Adad. Nauk. SSSR (N. S>), 90 (1953), 961–964. [In Russian].MATHMathSciNetGoogle Scholar
  9. [9]
    Korovkin, P. P., Linear Operators and Approximation Theory, Hindustan Publishing, Delhi, 1960Google Scholar
  10. [10]
    Matsumoto, T. and Watanabe, S., Extreme Points and Linear Isometries of the Domain of a Closed-derivation inC(K), J. Math. Soc. Japan, 48 (1996), 229–254.MATHMathSciNetCrossRefGoogle Scholar
  11. [11]
    Šaškin, Y. A., On Convergence of Contraction Operators, Math. Cluj., 11 (1969), 355–360.Google Scholar
  12. [12]
    Takahasi, S. E.,(T, E)-Korovkin Closures in Normed Spaces and BKW-operators, J. Approx. Theory, 82 (1995), 340–351.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Ustinov, G. M. and Vasil'čenko, A. A., Convergence of Operators in the Space of Differentiable Functions, Ural. Gos. Univ. Mat. Zap., 10 (1977), 8–14 [in Russian].MathSciNetGoogle Scholar
  14. [14]
    Wulbert, D. E., Convergence of Operators and Korovkin’s Theorem, J. Approx. Theory 1 (1968), 381–390.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2000

Authors and Affiliations

  • Go Hirasawa
    • 1
  • Keiji Izuchi
    • 2
  • Seiji Watanabe
    • 3
  1. 1.Department of Mathematical Science Graduate School of Science and TechnologyNiigata UniversityNiigataJapan
  2. 2.Department of Mathematics Faculty of ScienceNiigata UniversityNiigataJapan
  3. 3.Department of MathematicsNiigata Institute of TechnologyKasiwazakiJapan

Personalised recommendations