Solution of convex conservation laws in a strip

  • K. T. Joseph
  • G. D. Veerappa Gowda


In this paper we consider scalar convex conservation laws in one space variable in a stripD =(x, t): 0 ≤x ≤1,t > 0 and obtain an explicit formula for the solution of the mixed initial boundary value problem, the boundary data being prescribed in the sense of Bardos-Leroux and Nedelec. We also get an explicit formula for the solution of weighted Burgers equation in a strip.


Conservation laws boundary value problem explicit formula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bardos C, Leroux A Y and Nedelec J C, First order quasilinear equations with boundary conditions,Commun. Partial Differ. Equ. 4 (1979) 1018–1034CrossRefMathSciNetGoogle Scholar
  2. [2]
    Conway E D and Hopf E, Hamilton theory and generalised solutions of Hamilton-Jacobi equations,J. Math. Mech. 13 (1964) 939–986MATHMathSciNetGoogle Scholar
  3. [3]
    Le Floch P, Explicit formula for scalar nonlinear conservation laws with boundary condition,Math. mech. Appl. Sci. 10 (1988) 265–287MATHCrossRefGoogle Scholar
  4. [4]
    Joseph K T and Veerappa Gowda G D, Explicit formula for the solution of convex conservation laws with boundary condition.Duke Math. J. 62 (1991) 401–416MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Lax P D, Hyperbolic systems of conservation laws II,Commun. Pure Appl. Math. 10 (1957) 537–566MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Lions P L, Neumann type boundary conditions for Hamilton-Jacobi equations,Duke Math. J. 52 (1985) No. 3 793–820MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Indian Academy of Sciences 1992

Authors and Affiliations

  • K. T. Joseph
    • 1
  • G. D. Veerappa Gowda
    • 1
  1. 1.TIFR CentreIndian Institute of Science CampusBangaloreIndia

Personalised recommendations