Approximation Theory and its Applications

, Volume 18, Issue 3, pp 86–92 | Cite as

Interpolation spaces betweenH 1 andL on spaces of homogeneous type

  • Li Wenming


Using the maximal function characterization of Hardy spaces, we study the interpolation spaces between H1 and L on spaces of homogeneous type.


Hardy Space Maximal Function Polation Space Equivalent Norm Lorentz Space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bergh, J. and Lofstrom, J., Interpolation Spaces, New York, Springer-Verlag, 1976.MATHGoogle Scholar
  2. [2]
    Deng, D. G. and Han, Y. S., Theory ofH p Spaces, Beijing, Beijing University Press, 1992.Google Scholar
  3. [3]
    Li, W. M., A Maximal Function Characterization of Hardy Spaces on Spaces of Homogenous Type, Approx. Theory its Appl., 14(1998), 12–27.Google Scholar
  4. [4]
    Riviere, N.M. and Sagher, Y., Interpolation BetweenL andH 1, the Real Method, J. Func. Anal., 14(1974), 401–409.CrossRefMathSciNetGoogle Scholar
  5. [5]
    Han, Y. S. and Sawyer, E. T., Littlewood-Paley Theory on Spaces of Homogeneous Type and Classical Function Spaces, Mem. Amer. Math. Soc., 110(1994), 1–136.MathSciNetGoogle Scholar
  6. [6]
    Macias, R. A. and Segovia, C., Lipschitz Function on Spaces of Homogeneous Type, Adv. Math., 33(1979), 257–270.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Macias, R. A. and Segovia, C., A Decomposition Into Atoms of Distribution on Spaces of Homogeneous Type, Adv. Math., 33(1979), 271–309.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Coifman, R.R. and Weiss, G., Extensions of Hardy Spaces and Their Use in Analysis, Bull. Amer. Math. Soc., 83(1977), 569–645.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer 2002

Authors and Affiliations

  • Li Wenming
    • 1
  1. 1.College of Mathematics and Information ScienceHebei Normal UniversityShijiazhangP.R.China

Personalised recommendations