Approximation Theory and its Applications

, Volume 14, Issue 3, pp 106–116 | Cite as

Asymptotic approximation with Kantorovich polynomial

  • Ulrich Abel


We present the complete asymptotic expansion for the Kantorovich polynomials Kn as n→∞. The result is in a form convenient for applications. All coefficients of n−k (k=1,2,...) are calculated explicitly in terms of Stirling numbers of the first and second kind.

Moreover, we treat the simultaneous approximation with Kantorovich polynomials and determine the rate of convergence of\(\tfrac{d}{{dx}}K_n (f;x) - f'(x)\).


Asymptotic Expansion Asymptotic Approximation Simultaneous Approximation Polynomial Identity Central Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Abel, U., The moments for the Meyer-König and Zeller operators, J. Approx. Theory, 82 (1995), 352–361.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Abel, U., On the asymptotic approximation with operators of Bleimann, Butzer and Hahn, Indag. Mathem., New Ser., 7 (1996), 1–9.MATHMathSciNetGoogle Scholar
  3. [3]
    Abel, U., The complete asymptotic expansion for the Meyer-König and Zeller operators, J. Math. Anal. Appl., 208 (1997), 109–119.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Bernstein, S. N., Complément à l'article de E. Voronowskaja, Dokl. Akad. Nauk USSR, 4 (1932), 86–92.Google Scholar
  5. [5]
    Butzer, P. L., Summability of generalized Bernstein polynomials, Duke Math. J., 22 (1955), 617–622.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Chui, C. K., He, T. X. and Hsu, L. C., Asymptotic properties of positive summation-integral operators, J. Approx. Theory, 55 (1988), 49–60.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    DeVore, R. A. and Lorentz, G. G., “Constructive approximation,” Springer, Berlin, Heidelberg 1993.MATHGoogle Scholar
  8. [8]
    Heilmann, M.,L p-saturation of some modified Bernstein operators, J. Approx. Theory, 54 (1988), 260–273.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Kantorovich, L. V., Sur certains développements suivant les polynômials de la forme de S. Bernstein I, II, C. R. Acad. Sci. USSR, 20, A(1930), 563–568, 595–600.Google Scholar
  10. [10]
    Kelisky, R. P. and Rivlin, T. J., Iterates of Bernstein polynomials, Pacific J. Math., 21 (1967), 511–520.MATHMathSciNetGoogle Scholar
  11. [11]
    Lorentz, G. G., Bernstein polynomials, University of Toronto Press, Toronto 1953.MATHGoogle Scholar
  12. [12]
    Wafi, A., Habib, A. and Khan, H. H., On generalized Bernstein polynomials, Indian J. Pure Appl. Math., 9 (1978), 867–870.MATHMathSciNetGoogle Scholar
  13. [13]
    Xiaochun, W., Note on Bernstein polynomials and Kantorovich polynomials, Approx. Theory Appl., 7 (1991), 99–105.MATHMathSciNetGoogle Scholar

Copyright information

© Springer 1998

Authors and Affiliations

  1. 1.Fachhochschule Giessen-FriedbergFachbereich MNDFriedbergGermany

Personalised recommendations