Advertisement

Journal d’Analyse Mathematique

, Volume 62, Issue 1, pp 47–76 | Cite as

Uniform harmonic approximation on Riemannian manifolds

  • Thomas Bagby
  • Pierre Blanchet
Article

Keywords

Riemannian Manifold Harmonic Function Riemann Surface Compact Subset Green Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] S. Agmon,Unicité et Convexité dans les problèmes differentiels, Sem. Math. Sup. 13, Les Presses de l’Université de Montréal, 1966.Google Scholar
  2. [B] T. Bagby,A Runge theorem for harmonic functions on closed subsets of Riemann surfaces, Proc. Amer. Math. Soc.103 (1988), 160–164.MATHCrossRefMathSciNetGoogle Scholar
  3. [BG] T. Bagby and P. M. Gauthier,Approximation by harmonic functions on closed subsets of Riemann surfaces, J. Analyse Math.51 (1988), 259–284.MATHMathSciNetCrossRefGoogle Scholar
  4. [Bau] H. Bauer,Harmonische Räume und ihre Potentialtheorie, Lecture Notes in Mathematics22, Springer-Verlag, Berlin, 1966.MATHCrossRefGoogle Scholar
  5. [Ben] C.Bensouda,Approximations harmoniques sur les fermés en théorie axiomatique de Brelot, Thèse, Université Mohammed V (1988).Google Scholar
  6. [BJS] L. Bers, F. John and M. Schechter,Partial Differential Equations, Interscience Publishers, Wiley, New York, 1964.MATHGoogle Scholar
  7. [BH1] J. Bliedtner and W. Hansen,Simplicial cones in potential theory, Inv. Math.29 (1975), 83–110.MATHCrossRefMathSciNetGoogle Scholar
  8. [BH2] J. Bliedtner and W. Hansen,Simplicial cones in potential theory II. Approximation theorems, Inv. Math.46 (1978), 255–275.MATHCrossRefMathSciNetGoogle Scholar
  9. [BoiG] A. Boivin and P. M. Gauthier,Approximation harmonique sur les surfaces de Riemann, Canadian J. Math.36 (1984), 1–8.MATHMathSciNetGoogle Scholar
  10. [Bre] M. Brelot,Lectures on Potential Theory, second edition, Tata Institute of Fundamental Research, Bombay, 1967.MATHGoogle Scholar
  11. [C] I. Chavel,Eigenvalues in Riemannian geometry, Academic Press, New York, 1984.MATHGoogle Scholar
  12. [dlP] A. de la Pradelle,Approximation et caractère de quasi-analyticité dans la théorre axiomatique des fonctions harmoniques, Ann. Inst. Fourier (Grenoble)17 (1967), 383–399.MATHGoogle Scholar
  13. [dP] N. du Plessis,An Introduction to Potential Theory, Hafner, 1970.Google Scholar
  14. [DG] A. Debiard and B. Gaveau,Potentiel fin et algèbres de fonctions analytiques I, J. Functional Analysis16 (1974), 289–304.MATHCrossRefMathSciNetGoogle Scholar
  15. [DGO] A. Dufresnoy, P. M. Gauthier and W. H. Ow,Uniform approximation on closed sets by solutions of elliptic partial differential equations, Complex Variables6 (1986), 235–247.MathSciNetGoogle Scholar
  16. [Fo] G. Folland,Introduction to Partial Differential Equations, Princeton University Press, 1976.Google Scholar
  17. [F1] B. Fuglede,Finely Harmonic Functions, Lecture Notes in Mathematics289, Springer-Verlag, Berlin, 1972.MATHGoogle Scholar
  18. [F2] B. Fuglede,Localization in fine potential theory and uniform approximation by subharmonic functions, J. Functional Analysis49 (1982), 57–72.MATHCrossRefMathSciNetGoogle Scholar
  19. [GGO] P. M. Gauthier, M. Goldstein and W. H. Ow,Uniform approximation on closed sets by harmonic functions with Newtonian singularities, J. London Math. Soc. (2)28 (1983), 71–83.MATHCrossRefMathSciNetGoogle Scholar
  20. [GH1] P. M. Gauthier and W. Hengartner,Uniform approximation on closed sets by functions analytic on a Riemann surface, inApproximation Theory (Z. Ciesielski and J. Musielak, eds.), Reidel, Dordrecht, 1975, pp. 63–70.Google Scholar
  21. [GH2] P. M. Gauthier and W. Hengartner,Approximation uniforme qualitative sur des ensembles non bornés, Les Presses de l’Université de Montréal, 1982.Google Scholar
  22. [GL] P. M. Gauthier and S. Ladouceur, to appear.Google Scholar
  23. [GT] D. Gilbarg and N. S. Trudinger,Elliptic Partial Differential Equations of Second Order, second edition, Springer-Verlag, Berlin, 1983.MATHGoogle Scholar
  24. [H1] R.-M. Hervé,Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiels, Ann. Inst. Fourier (Grenoble)12 (1962), 415–471.MATHMathSciNetGoogle Scholar
  25. [H2] R.-M. Hervé,Quelques propriétés des fonctions surharmoniques associées à une équation uniformément elliptique de la forme Lu=−Σi∂/∂x ij a iju/∂x j)=0, Ann. Inst. Fourier (Grenoble)15 (1965), 215–224.MATHMathSciNetGoogle Scholar
  26. [L] M. Labrèche,De l’approximation harmonique uniforme, Thèse, Université de Montréal, 1982.Google Scholar
  27. [LSW] W. Littman, G. Stampacchia and H. Weinberger,Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa 317 (1963), 43–77.MATHMathSciNetGoogle Scholar
  28. [N] M. Nakai,Infinite boundary value problems for second order elliptic partial differential equations, J. Fac. Sci. Tokyo, Ser. 1A,17 (1970), 101–121.MATHMathSciNetGoogle Scholar
  29. [NS1] M. Nakai and L. Sario,Existence of biharmonic Green’s functions, Proc. London Math. Soc. (3)36 (1978), 337–368.MATHCrossRefMathSciNetGoogle Scholar
  30. [NS2] M. Nakai and L. Sario,Harmonic functionals on open Riemann surfaces, Pacific J. Math.93 (1981), 147–161.MATHMathSciNetGoogle Scholar
  31. [NarXXX R. Narasimhan,Analysis on Real and Complex Manifolds, third printing, North-Holland, Amsterdam, 1985.MATHGoogle Scholar
  32. [P] M. H. Protter,Unique continuation for elliptic equations, Trans. Amer. Math. Soc.95 (1960), 81–91.MATHCrossRefMathSciNetGoogle Scholar
  33. [R] H. Royden,The growth of a fundamental solution of an elliptic divergence structure equation, Studies in Mathematical Analysis and Related Topics: Essays in Honor of George Polya, Stanford University Press, 1962, pp.333–340.Google Scholar
  34. [RS] B. Rodin and L. Sario,Principal Functions, van Nostrand, New York, 1968.MATHGoogle Scholar
  35. [SN] L. Sario and M. Nakai,Classification Theory of Riemann Surfaces, Springer-Verlag, Berlin, 1970.MATHGoogle Scholar
  36. [SNWC] L. Sario, M. Nakai, C. Wang and L. O. Chung,Classification Theory of Riemannian Manifolds, Lecture Notes in Mathematics605, Springer-Verlag, Berlin, 1977.MATHGoogle Scholar
  37. [S] S. Scheinberg,Uniform approximation by meromorphic functions having prescribed poles, Math. Ann.243 (1979), 83–93.MATHCrossRefMathSciNetGoogle Scholar
  38. [Ser] J. Serrin,Removable singularities of solutions of elliptic equations, Arch. Rational Mech. Anal.17 (1964), 67–78.MATHCrossRefMathSciNetGoogle Scholar
  39. [Sha1] A. A. Shaginyan,Tangential harmonic and gradient approximations, Doklady Acad. Sci. Arm. SSR77 (1983), 3–5.MATHMathSciNetGoogle Scholar
  40. [Sha2] A. A. Shaginyan,On tangential harmonic approximation and some related problems, inComplex Analysis I, Univ. of Md., Lecture Notes in Mathematics1275, Springer-Verlag, Heidelberg, 1987, pp.280–286.CrossRefGoogle Scholar
  41. [V] A. G. Vitushkin,Analytic capacity of sets and problems in approximation theory, Uspehi Mat. Nauk22 (1967), 141–199;English translation: Russian Math. Surveys22 (1967), 139–200.MATHMathSciNetGoogle Scholar
  42. [Z] L. Zalcman,Analytic Capacity and Rational Approximation, Lecture Notes in Mathematics50, Springer-Verlag, Berlin, 1968.MATHGoogle Scholar

Copyright information

© Hebrew University 1994

Authors and Affiliations

  • Thomas Bagby
    • 1
  • Pierre Blanchet
    • 2
  1. 1.Department of Mathematics Rawles HallIndiana UniversityBloomingtonUSA
  2. 2.Centre de Recherches MathématiquesUniversité de MontréalMontréalCanada

Personalised recommendations