Advertisement

Il Nuovo Cimento (1955-1965)

, Volume 5, Issue 3, pp 628–639 | Cite as

Quantum fluid as a common model for superfluidity and superconductivity

  • N. Mikoshiba
Article

Summary

Some dynamical properties of quantum fluid as a simple common model for superfluidity and superconductivity are studied. Comparison with another common model i.e. an ideal Bose gas is made. The connection theorem proved bySchafroth in the case of many particle systems is proved also in the case of quantum fluid. By the theorem Landau’s equation of superfluidity and London’s equation of superconductivity can be verified for quantum fluid.

Riassunto

Si esaminano alcune proprietà dinamiche di un fluido quantico preso come semplice modello comune per lo studio della superfluidità e della superconduttività. Si fa un confronto con un altro modello usuale, cioè con il gas ideale di Bose. Il teorema di connessione dimostrato daSchafroth per il caso di sistemi di più particelle è dimostrato anche per il caso del fluido quantico. In virtù di tale teorema, si possono verificare per il fluido quantico l’equazione di Landau della superfluidità e quella di London della superconduttività.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    M. R. Schafroth:Phys. Rev.,96, 1149 (1954);100, 463 (1955).ADSCrossRefGoogle Scholar
  2. (2).
    N. Mikoshiba:Prog. Theor. Phys.,13, 627 (1955).ADSCrossRefMATHGoogle Scholar
  3. (3).
    S. Nakajima:Busseiron Kenkyu,85, 17 (1955).Google Scholar
  4. (4).
    F. London:Phys. Rev.,54, 947 (1938).ADSCrossRefMATHGoogle Scholar
  5. (5).
    J. M. Blatt andS. T. Butler:Phys. Rev.,100, 476 (1955).MathSciNetADSCrossRefGoogle Scholar
  6. (6).
    M. R. Schafroth:Phys. Rev.,100, 502 (1955).MathSciNetADSCrossRefGoogle Scholar
  7. (7).
    L. Landau:Journ. Phys. U.S.S.R.,5, 71 (1941).Google Scholar
  8. (8).
    R. Kronig andA. Thellung:Physica,18, 749 (1952);G. R. Allcock andC. G. Kuper:Proc. Roy. Soc., A231, 226 (1955).MathSciNetADSCrossRefMATHGoogle Scholar
  9. (9).
    J. M. Blatt, S. T. Butler andM. R. Schafroth:Phys. Rev.,100, 481 (1955).MathSciNetADSCrossRefGoogle Scholar
  10. (10).
    E. Andronikashvilli:Journ. Phys. U.S.S.R.,10, 201 (1946).Google Scholar
  11. (11).
    P. Kapitza:Nature,141, 74 (1938).ADSCrossRefGoogle Scholar
  12. (12).
    P. R. Zilsel:Phys. Rev.,92, 1106 (1953).MathSciNetADSCrossRefGoogle Scholar
  13. (13).
    J. M. Ziman:Proc. Roy. Soc., A219, 257 (1953).ADSCrossRefGoogle Scholar
  14. (14).
    V. L. Ginzburg:Nuovo Cimento,2, 1234 (1955);D. Shoenberg:Suppl. Nuovo Cimento,10, 459 (1953).CrossRefMATHGoogle Scholar

Copyright information

© Società Italiana di Fisica 1957

Authors and Affiliations

  • N. Mikoshiba
    • 1
  1. 1.Physical InstituteNagoya UniversityNagoyaJapan

Personalised recommendations