Advertisement

In Vitro

, Volume 12, Issue 11, pp 726–733 | Cite as

Comparative mapping using somatic cell hybrids

  • John D. Minna
  • Peter A. Lalley
  • Uta Francke
Symposium Procedings

Summary

Comparative mapping, or ascertaining the gene linkage relationships between different species, is rapidly developing. This is possible because new techniques in chromosome identification and somatic cell hybridization, such as the generation of hybrids preferentially segregating chromosomes of any desired species including rodents, and the development of gene transfer techniques have yielded new information about the human and rodent gene maps. In addition, the discovery and characterization of mouse subspecies has generated new mouse sexual genetic linkage data. The following picture is emerging. Several X-linked genes in man are X-linked in all mammalian species tested. The linkage relationships of several tightly linked genes, less than 1 map unit apart, are also conserved in all mammalian species tested. Ape autosomal genes are assigned to ape chromosomes homologous to their human counterparts indicating extensive conservation in the 12 million years (MYR) of evolution from apes to man. Similarly, mouse and rat, 10 MYR apart in evolution, have several large autosomal synteny groups conserved. In comparing the mouse and human gene maps we find that human genes assigned to different arms of the same human chromosome are unlinked in the mouse; mouse genes large map distances (20 to 45 cM) apart are very likely to be unlinked in the human. However, several autosomal synteny groups 10 to 20 cM apart, including thePgd, Eno-1, Pgm-1 group on human chromosome arm lp, are conserved in mice and man. This suggests that homology mapping, the superimposition of one species gene map on the homologous conserved portion of another species genome may be possible, and that ancestral autosomal synteny groups should be detectable.

Key words

comparative mapping chromosomes hybrid cells evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bergsma, D. (Ed.). 1976.Birth Defects (Original Article Series). Baltimore Conferences, Third International Workshop on Human Gene Mapping, 1975, Vol. XII, No. 7. The National Foundation, New York.Google Scholar
  2. 2.
    Warburton, D., and P. L. Pearson. 1976. Report of the committee on comparative mapping. In: D. Bergsma (Ed.),Birth Defects (Original Article Series). Baltimore Conferences. Third International Workshop on Human Gene Mapping, 1975. Vol. XII, No. 7. The National Foundation, New York, pp. 75–82.Google Scholar
  3. 3.
    Wilson, A. C., L. R. Maxson, and V. M. Sareich. 1974. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc. Natl. Acad. Sci. U.S.A. 71: 2843–2847.PubMedCrossRefGoogle Scholar
  4. 4.
    Wilson, A. C., V. M. Sareich, and L. R. Maxson. 1974. The importance of gene rearrangement in evolution: evidence from studies on rates of chromosomal, protein, and anatomical evolution. Proc. Natl. Acad. Sci. U.S.A. 71: 3028–3030.PubMedCrossRefGoogle Scholar
  5. 5.
    Wilson, A. C., G. L. Bush, S. M. Case, and M. C. King. 1975. Social structuring of mammalian populations and rate of chromosomal evolution. Proc. Natl. Acad. Sci. U.S.A. 72: 5061–5065.PubMedCrossRefGoogle Scholar
  6. 6.
    Comings, D. E. 1972. Evidence for ancient tetraploidy and conservation of linkage groups in mammalian chromosomes. Nature 238: 455–457.PubMedCrossRefGoogle Scholar
  7. 7.
    Ohno, S. 1973. Ancient linkage groups and frozen accidents. Nature 244: 259–262.CrossRefGoogle Scholar
  8. 8.
    Rice, N. R. 1972. In: H. H. Smith (Ed.),Evolution of Genetic Systems. Gordon and Breach, New York, pp. 44–79.Google Scholar
  9. 9.
    Benveniste, R. E., and G. J. Todaro. 1976. Evolution of type C viral genes: evidence for an Asian origin of man. Nature 261: 101–108.PubMedCrossRefGoogle Scholar
  10. 10.
    Miller, O. R., and D. A. Miller. 1975. Cytogenetics of the mouse. Ann. Rev. Genet. 9: 285–303.PubMedCrossRefGoogle Scholar
  11. 11.
    Rotterdam Conference (1974). 1975.Second International Workshop on Human Gene Mapping. Birth Defects (Original Article Series, The National Foundation, New York). Vol. XI. No. 3.Google Scholar
  12. 12.
    Minna, J. D., and H. G. Coon. 1974. Human x mouse hybrid cells segregating mouse chromosomes and isozymes. Nature 252: 401–404.PubMedCrossRefGoogle Scholar
  13. 13.
    Minna, J. D., T. H. Marshall, and P. V. Shaffer-Berman. 1975. Chinese hamster x mouse hybrid cells segregating mouse chromosomes and isozymes. Som. Cell Genet. 1: 355–369.CrossRefGoogle Scholar
  14. 14.
    Minna, J. D., T. H. Marshall, and P. Shaffer-Berman. 1976. Gene mapping by somatic cell hybridization in species other than man. In: D. Bergsma (Ed.),Birth Defects (Original Article Series). Baltimore Conferences. Third International Workshop on Human Gene Mapping, 1975. Vol. Xii, No. 7. The National Foundation, New York, pp. 422–429.Google Scholar
  15. 15.
    Minna, J. D., J. Yavelow, and H. G. Coon. 1975. Expression of phenotypes in hybrid somatic cells derived from the nervous system. Genetics Supplement. Proceedings XIIIth Congress of Genetics 79: 373–383.Google Scholar
  16. 16.
    Kozak, C., E. Nichols, and F. H. Ruddle. 1975. Gene linkage analysis in the mouse by somatic cell hybridization: assignment of adenine phosphoribosyltransferase to chromosome 8 andα-galactosidase to the X chromosome. Som. Cell Genet. 1: 371–382.CrossRefGoogle Scholar
  17. 17.
    Deisseroth, A., and A. Nienhuis. 1976. Study of markers of erythroid differentiation in hybrid cells. In Vitro 12: 734–742.PubMedGoogle Scholar
  18. 18.
    Deisseroth, A. 1976. Isolation of hybrid cells that exhibit markers of erythroid differentiation. N. Engl. J. Med 294: 148–152.PubMedCrossRefGoogle Scholar
  19. 19.
    McBride, O. W. Permanent transfer of genes to eukaryotic cells by uptake of metaphase chromosomes. In Vitro, in press.Google Scholar
  20. 20.
    Womack, J. E., and M. Sharp. 1976. Comparative autosomal linkage in mammals: genetics of esterases inMus musculus andRattus norvegicus. Genetics 82: 665–675.PubMedGoogle Scholar
  21. 21.
    Chapman, V. M. 1975. 6 phosphogluconate dehydrogenase (PGD) genetics in the mouse: linkage with metabolically related enzyme loci. Biochem. Genet. 13: 849–856.PubMedCrossRefGoogle Scholar
  22. 22.
    Searle, A. G. 1976. Mouse mutant gene list. Mouse News Lett. 54: 6–22.Google Scholar
  23. 23.
    Womack, J. E. 1976. Linkage map of the mouse. Mouse News Lett. 55: 6Google Scholar
  24. 24.
    Womack, T. E., N. L. Hawes, E. R. Soures, and T. H. Roderick. 1976. Mitochondrial malate dehydrogenase (Mor-1) in the mouse: linkage to chromosome 5 markers. Biochem. Genet., in press.Google Scholar
  25. 25.
    Chapman, V. M., and T. B. Shows. 1976. Somatic cell genetic evidence for X-chromosome linkage of three enzymes in the mouse. Nature 259: 665–667.PubMedCrossRefGoogle Scholar
  26. 26.
    Turleau, C., J. de Grouchy, and M. Klein. 1972. Phylogenic chromosomique de l’homme et des primates hominiens (Pan troglodytes, Gorilla gorilla etPongo pygmaeus). Essai de reconstitution du caryotype de l’ancetre commun. Ann. Genet. 15: 225–40.PubMedGoogle Scholar
  27. 27.
    Dutrillaux, B., M. O. Rethore, M. Prieur, J. Lejeune. 1973. Analyse de la structure fine des chromosomes du Gorille (Gorilla gorilla): comparison avecHomo sapiens etPan troglodytes. Humangenetik 20: 343–354.PubMedGoogle Scholar
  28. 28.
    Warburton, D., I. L. Firschein, D. A. Miller, and F. E. Warburton. 1973. Karyotype of the chimpanzee,Pan troglodytes, based on measurements and banding patterns: comparison to the human karyotype. Cytogenet. Cell Genet. 12: 453–461.PubMedGoogle Scholar
  29. 29.
    Hood, L., J. H. Campbell, and S. C. R. Elgin. 1975. The organization, expression, and evolution of antibody genes and other multigene families. Ann. Rev. Genet. 9: 305–353.PubMedCrossRefGoogle Scholar
  30. 30.
    Willecke, K., R. Lange, A. Kruger, and T. Reber. 1976. Cotransfer of two linked human genes into cultured mouse cells. Proc. Natl. Acad. Sci. U.S.A. 73: 1274–1278.PubMedCrossRefGoogle Scholar
  31. 31.
    Nesbitt, M. 1974. Evolutionary relationships between rat and mouse chromosomes. Chromosoma 46: 217–24.PubMedCrossRefGoogle Scholar
  32. 32.
    Womack, J., Davisson, E. Eicher, and D. Kendall. 1976. Mouse News Lett. 54: 41.Google Scholar
  33. 33.
    Bruns, G. A. P., and P. S. Gerald. 1976. Expression of the human adenylate kinase isozymes, phosphopyruvate hydratase, 6-phosphogluconate dehydrogenase, and phosphoglucomutase-1 in man-rodent somatic cell hybrids. Biochem. Genet. 14: 1–17.PubMedCrossRefGoogle Scholar
  34. 34.
    Lalley, P. A., U. Francke, and J. D. Minna. Unpublished data.Google Scholar

Copyright information

© Tissue Culture Association 1977

Authors and Affiliations

  • John D. Minna
    • 1
  • Peter A. Lalley
    • 1
  • Uta Francke
    • 2
  1. 1.NCI-VA Medical Oncology BranchNational Cancer InstituteUSA
  2. 2.Department of PediatricsUniversity of California at San DiegoUSA

Personalised recommendations