Analysis in Theory and Applications

, Volume 20, Issue 3, pp 215–230 | Cite as

Boundedness of commutators related to Marcinkiewicz integrals on hardy type spaces

  • Lu Shanzhen
  • Xu Lifang


In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a functionb∈Lip β (ℝ n )(0<β≤1) and the Marcinkiewicz integrals \gm\gW, on the classical Hardy spaces and the Herz-type Hardy spaces in the case Ω∈Lipα(S n−1)(0<≤1).

Key words

Marcinkiewicz integral commutator Lipschitz space Hardy space Herz space atom 

AMS(2000)subject classification

42B20 42B30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Stein, E. M., On the Function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc., 88(1958) 430–466.CrossRefMathSciNetGoogle Scholar
  2. [2]
    Benedek, A., Calderón, A. and Panzone, R., Convolution Operators on Banach Space Valued Functions, Proc. Nat. Acad. Sci. USA, 48(1962), 356–365.MATHCrossRefGoogle Scholar
  3. [3]
    Ding, Y., Fan, D. and Pan, Y., Weighted Boundedness for a Class of Rough Marcinkiewicz Integrals, Indiana Univ. Math. J., 48(1999), 1037–1055.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Ding, Y., Fan, D. and Pan, Y.,L p-Boundedness of Marcinkiewicz Integrals with Hardy Space Function Kernel, Acta Math. Sinica (English Series), 16(2000), 593–600.MATHMathSciNetCrossRefGoogle Scholar
  5. [5]
    Colzani, L., Taibleson, M.H. and Weiss, G., Maximal Estimates for Cesaro and Riesz Means on Sphere, Indiana Univ. Math. J., 33(1984), 873–889.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Chen, J.C., Xu, H. and Ying, Y.M., A Note on Marcinkiewicz Integrals withH 1 Kernel, to Appear in Acta. Math. Scientia.Google Scholar
  7. [7]
    Torchinsky, A. and Wang, S., A Note on the Marcinkiewicz Integral, Colloquium Math, 60/61 (1990), 235–243.MathSciNetGoogle Scholar
  8. [8]
    Ding, Y., Lu, S.Z. and Yabuta, K., On Commutators of Marcinkiewicz Integrals with Rough Kernel, Preprint.Google Scholar
  9. [9]
    Wang, Y., A Note Commutator of Marcinkiewicz Integral, Preprint.Google Scholar
  10. [10]
    Stein, E.M., Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Univ. Press, Princeton, N. J., 1993.MATHGoogle Scholar
  11. [11]
    Lu, S.Z., Four Lectures on RealH p Spaces, World Scientific Publishing Co. Pte. Ltd., 1995.Google Scholar
  12. [12]
    Li, X.W. and Yang, D.C., Boundedness of Some Sublinear Operators on Herz Spaces, Illinois J. Math., 40(1996), 484–501.MATHMathSciNetGoogle Scholar
  13. [13]
    Lu, S.Z. and Yang, D.C., The Weighted Herz-Type Hardy Space and Its Applications, Sci. in China (Ser. A), 38(1995), 662–673.MATHMathSciNetGoogle Scholar
  14. [14]
    Hu, G.E., Lu, S.Z. and Yang, D.C., The Weak Herz Spaces, J. of Beijing Norm. Univ. (Nat. Sci.), 33(1997), 27–34.MATHMathSciNetGoogle Scholar

Copyright information

© Springer 2004

Authors and Affiliations

  1. 1.Department of MathematicsBeijing Normal UniversityBeijingP. R. China

Personalised recommendations