Neurochemical Pathology

, Volume 4, Issue 3, pp 165–176 | Cite as

Diabetic rat serum has an increased capacity to inhibit brain microtubule formation in vitro

  • W. G. McLean
  • S. J. Beahon
  • I. F. Casson
Original Articles


The assembly of pig brain microtubule proteins was measured in vitro in the presence of serum from control rats and rats that had been rendered diabetic with 50 mg/kg streptozotocin 14 d previously. Control serum inhibited total microtubule assembly and increased the lag time before assembly commenced. Serum from diabetic animals was significantly more potent in both respects. The effect on lag time was reproduced in a predominantly albumin-containing fraction of serum that had been fractionated by affinity chromatography. Glycosylation of rat albumin in vitro led to an increase in its ability to increase polymerization lag time, but the concentration of albumin required was greater than that found in the serum fractions. The results indicate that diabetic serum contains factors that can adversely affect microtubule formation and that part of this effect may be caused by the presence of glycosylated albumin. This phenomenon may underlie some of the complications associated with diabetes.

Index Entries

Microtubules diabetes diabetic complications glycosylation albumin serum brain microtubule formation, inhibition of by diabetic rat serum protein, pig brain microtubule, assembly of glycosylated albumin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Banks P. and Till R. (1975) A correlation between the effects of anti-mitotic drugs on microtubule assembly in vitro and the inhibition of axonal transport in noradrenergic neurones.J. Physiol. (Lond.) 252, 283–294.Google Scholar
  2. Beahon S. J., McLean W. G., and Casson I. F. (1985) The effects of diabetic rat and human serum on the polymerisation of brain tubulin.Br. J. Pharmacol. 84, 81P.Google Scholar
  3. Black M. M. and Kurdyla J. T. (1983) Microtubule-associated proteins of neurones.J. Cell Biol. 97, 1020–1028.PubMedCrossRefGoogle Scholar
  4. Boegman R. J. and Riopelle R. J. (1980) The role of axonal transport and impulse conduction on the uptake and retrograde transport of nerve growth factor and bovine serum albumin in peripheral nerve.J. Neurobiol. 11, 497–502.PubMedCrossRefGoogle Scholar
  5. Brimijoin S. (1982) Microtubules and the capacity of the system for rapid axoplasmic transport.Fed. Proc. 42, 2312–2316.Google Scholar
  6. Bruck C., Portetelle D., Glineur C., and Bollen A. J. (1982) One-step purification of mouse monoclonal antibodies from ascitic fluid by DEAE Affi-Gel blue chromatography.J. Immunol. Methods 53, 313–319.PubMedCrossRefGoogle Scholar
  7. Candiano G., Ghiggeri G. M., Delfino G., Queirolo C., Gianazza E., and Righetti P. G. (1984) Glycosylation of human albumin in diabetes mellitus: Extensive microheterogeneity of serum and urinary species as revealed by isoelectric focusing.Electrophoreis 5, 217–222.CrossRefGoogle Scholar
  8. Caron J. M. and Berlin R. D. (1979) Interaction of microtubule proteins with phospholipid vesicles.J. Cell Biol. 81, 665–671.PubMedCrossRefGoogle Scholar
  9. Cleveland D. W., Hwo S.-Y., and Kirschner M. W. (1977) Purification of Tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin.J. Mol. Biol. 116, 207–226.PubMedCrossRefGoogle Scholar
  10. Daleo G. R., Piras M. M., and Piras R. (1977) The effect of phospholipids on the in vitro polymerization of rat brain tubulin.Arch. Biochem. Biophys. 180, 288–297.PubMedCrossRefGoogle Scholar
  11. Day J. F., Thorpe S., and Baynes J. W. (1979) Non-enzymatically glycosylated albumin.J. Biol. Chem. 254, 595–597.PubMedGoogle Scholar
  12. Dustin P. (1984)Microtubules, Springer, Berlin.Google Scholar
  13. Erickson H. P. and Voter W. A. (1976) Polycation-induced assembly of purified tubulin.Proc. Natl. Acad. Sci. USA 63, 2813–2817.CrossRefGoogle Scholar
  14. Feit H. and Shay J. W. (1980) The assembly of tubulin into membranes.Biochem. Biophys. Res. Commun. 94, 324–331.PubMedCrossRefGoogle Scholar
  15. Gainer H. and Fink D. J. (1982) Evidence for slow retrograde transport of serum albumin in rat sciatic nerve.Brain Res. 233, 404–408.PubMedCrossRefGoogle Scholar
  16. Herzog W. and Weber K. (1978) Fractionation of brain microtubule-associated proteins. Isolation of two different proteins which stimulate tubulin polymerisation in vitro.Eur. J. Biochem. 92, 1–8.PubMedCrossRefGoogle Scholar
  17. Ikeda Y. and Steiner M. (1976) Isolation of platelet microtubule protein by an immunosorptive method.J. Biol. Chem. 251, 6135–6141.PubMedGoogle Scholar
  18. Kwaan H. C., Colwell J. A., Cruz S., Suwanwela N., and Dobbie J. G. (1972) Increased platelet aggregation in diabetes mellitus.J. Lab. Clin. Med. 80, 236–246.PubMedGoogle Scholar
  19. Lee J. C., Tweedy N., and Timasheff S. N. (1978) In vitro reconstitution of calf brain microtubules: Effects of macromolecules.Biochemistry 17, 2783–2790.PubMedCrossRefGoogle Scholar
  20. Lowry O. H., Rosebrough N. J., Farr A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  21. Margolis R. L. and Wilson L. (1978) Opposite end assembly and disassembly of microtubules at steady state in vitro.Cell 13, 1–8.PubMedCrossRefGoogle Scholar
  22. Mata M., Staple J., and Fink, D. J. (1985) Ultrastructural localization of slow retrograde axonal transport on autoradiographic study.J. Neurosci. 5, 2900–2908.PubMedGoogle Scholar
  23. Morris J. R. and Lasek R. J. (1984) Monomer-polymer equilibrium in the axon: Direct measurement of tubulin and actin as polymer and monomer in axoplasm.J. Cell Biol. 98, 2064–2076.PubMedCrossRefGoogle Scholar
  24. Pickard M. R. and Hawthorne J. N. (1978) Doesmyo inositol specifically interact with brain microtubules?FEBS Letts.93, 78–80.CrossRefGoogle Scholar
  25. Regula C. S., Pfeiffer J. R., and Berlin R. D. (1981) Microtubule assembly and disassembly at alkaline pH.J. Cell Biol. 83, 45–53.CrossRefGoogle Scholar
  26. Rousset B., Vialettes B., Bernier-Valentin F., Vague P., Beylot M., and Mornex R. (1984) Anti-tubulin antibodies in recent onset Type 1 (insulin-dependent) diabetes mellitus. Comparison with islet cell antibodies.Diabetologia 27, 427–432.PubMedCrossRefGoogle Scholar
  27. Ruiz-Cabello F. and Erill S. (1984) Abnormal serum protein binding of acidic drugs in diabetes mellitus.Clin. Pharmacol. Ther. 36, 691–695.PubMedCrossRefGoogle Scholar
  28. Sakai H. (1980) Regulation of microtubule assembly in vitro.Biomed. Res. 1, 359–375.Google Scholar
  29. Sidenius, P. (1982) The axonopathy of diabetic neuropathy.Diabetes 31, 364–366.CrossRefGoogle Scholar
  30. Sloboda R. D., Dentler W. L., and Rosenbaum J. L. (1976) Microtubule-associated proteins and the stimulation of tubulin assembly in vitroBiochemistry 15, 4497–4505.PubMedCrossRefGoogle Scholar
  31. Soifer D. and Czosnek H. (1980) Association of newly synthesised tubulin with brain microsomal membranes.J. Neurochem. 35, 1128–1136.PubMedCrossRefGoogle Scholar
  32. Steiner M. (1983) Membrane-bound tubulin in human platelets.Biochem. Biophys. Acta 729, 17–22.PubMedCrossRefGoogle Scholar
  33. Tomlinson D. R. and Mayer J. H. (1984) Defects of axonal transport in diabetes mellitus—a possible contribution to the aetiology of diabetic neuropathy.J. Autonom. Pharmacol. 4, 59–72.CrossRefGoogle Scholar
  34. Vlassara H., Brownlee M., and Cerami A. (1981) Nonenzymatic glycosylation of peripheral nerve protein in diabetes mellitus.Proc. Natl. Acad. Sci. USA 78, 5190–5192.PubMedCrossRefGoogle Scholar
  35. Williams S. K., Howarth N. L., Devenny J. J., and Bitensky M. W. (1982) Structural and functional consequences of increased tubulin glycosylation in diabetes mellitus.Proc. Natl. Acad. Sci. USA 79, 6546–6550.PubMedCrossRefGoogle Scholar
  36. Wray W., Boulikas T., Wray V. P., and Hancock R. (1981) Silver staining of proteins in polyacrylamide gels.Anal. Biochem. 118, 197–203.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1986

Authors and Affiliations

  • W. G. McLean
    • 1
  • S. J. Beahon
    • 1
  • I. F. Casson
    • 1
  1. 1.Department of Pharmacology and TherapeuticsUniversity of LiverpoolLiverpoolEngland

Personalised recommendations