Neurochemical Pathology

, Volume 2, Issue 3, pp 163–169 | Cite as

Effect of carrageenin-induced pedal edema on rat brain prostaglandins

  • S. K. Bhattacharya
  • Neeta Das
Original Articles


Carrageenin-induced pedal inflammation in rats, was found to significantly enhance brain levels of prostaglandin (PG) E2 and PGF. PG levels increased after 30 min of induction of the inflammation, peaked at 1 h, and attained normal levels by 4 h. Bilateral adrenalectomy had little effect on carrageenin-induced increase in rat brain PGs. The pattern of elevation of central PGs and the time course of carrageenin inflammation were at variance, the latter peaking between 3 and 4 h.

The findings lend credence to the postulate that inflammatory hyperalgesia involves participation of central pain circuits, and that fever accompanying inflammation is caused by the central release of PGs. The central nociceptive and hyperthermic actions of PGs are well documented. However, the increase in central PG levels may well be caused by stress induced by the peripheral inflammation, since the pattern of elevation in either case is qualitatively similar.

Index Entries

Carrageenin, effect of edema induced by, on brain prostaglandins pedal inflammation, effect on brain prostaglandins by carrageenin-induced rat brain prostaglandins, effect of carrageenin-induced pedal inflammation on edema, effect on brain prostaglandins by carrageenin-induced prostaglandins, effect of carrageenin-induced edema on brain brain prostaglandins, effect of carrageenin-induced edema on 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bhattacharya S. K. (1982) Stress by restraining elevates brain prostaglandins in the rat.Neurosci. Lett. 33, 165–168.PubMedCrossRefGoogle Scholar
  2. Bhattacharya S. K. and Das N. (1984) Effect of central prostaglandins on carrageenin-induced pedal oedema in rats.J. Pharm. Pharmacol. (in Press).Google Scholar
  3. Bito L. Z. and Davson H. (1974) Carrier mediated removal of prostaglandins from cerebrospinal fluid.J. Physiol. (Lond.)236, 39–40 P.Google Scholar
  4. Bito L. Z., Davson H., and Hollingsworth, J. R. (1976) Facilitated transport of prostaglandins across the blood-cerebrospinal fluid and blood-brain barriers.J. Physiol. (Lond.)256, 273–285.Google Scholar
  5. Cooper S. A. (1981) Comparative analgesic efficacies of aspirin and acetaminophen.Arch. Intern. Med. 141, 293–300.CrossRefGoogle Scholar
  6. Coceani F. and Pace-Asciak C. R. (1976) Prostaglandins and the central nervous system, inProstaglandins: Physiological, Pharmacological and Pathological Aspects (Karim S. M. M., ed.) p. 1, MTP Press, Lancaster.Google Scholar
  7. Das N. and Bhattacharya S. K. (1984) Central catecholaminergic modulation of carrageenin-induced inflammation in rats.Can. J. Neurol. Sci. (communicated).Google Scholar
  8. Das N., Das P. K., and Bhattacharya S. K. (1983) Central modulation of peripheral inflammation in albino rats.Ind. J. Pharmacol. 15, 64–65.Google Scholar
  9. Ferreira S. H. (1979) Participation of prostaglandins in inflammatory pain, inAdvances in Pharmacology and Therapeutics, Vol. 4:Prostaglandins-Immunopharmacology (Vargaftig, B. B., ed.) pp. 63, Pergamon Press, New York.Google Scholar
  10. Ferreira S. H., Lorenzetti B. B., and Correa F. M. A. (1978) Central and peripheral antialgesic action of aspirin-like drugs.Eur. J. Pharmacol. 53, 39–48.PubMedCrossRefGoogle Scholar
  11. Ferri S., Santagostino A., Braga P. C., and Galatulas I. (1974) Decreased antinociceptive effect of morphine in rats treated intraventricularly with prostaglandin E1.Psychopharmacologia 39, 231–235.PubMedCrossRefGoogle Scholar
  12. Flower R. J. (1974) Drugs which inhibit prostaglandin biosynthesis.Pharmacol. Rev. 26, 33–67.PubMedGoogle Scholar
  13. Flower, R. J. (1978) Prostaglandins and related compounds, inHandbook of Experimental Pharmacology, Vol. 50/1:Inflammation (Vane J. R. and Ferreira S. H., eds.) pp. 374, Springer-Verlag, New York.Google Scholar
  14. Flower R. J. and Vane J. R. (1972) Inhibition of prostaglandin synthetase in brain explains the antipyretic activity of paracetamol (4-acetamido-phenol).Nature (Lond.)240, 410–411.CrossRefGoogle Scholar
  15. Granstrom E. and Kindahl H. (1978) Radioimmunoassay for prostaglandins and thromboxanes, inAdvances in Prostaglandin and Thromboxane Research (Frolich, J. C., ed.) pp. 119, Raven Press, New York.Google Scholar
  16. Moncada S., Ferreira S. H., and Vane J. R. (1975) Inhibition of prostaglandin biosynthesis as the mechanism of analgesia of aspirin-like drugs in the dog knee joint.Eur. J. Pharmacol. 31, 250–260.PubMedCrossRefGoogle Scholar
  17. Steinhauer H. B., Anhut H., and Hertting G. (1980) Stress-induced increase of prostaglandin synthesis in mouse brain, inCatecholamines and Stress: Recent Advances (Usdin E., Kvetnansky R., and Kopin I. J., eds.) pp. 101, Elsevier North Holland, New York.Google Scholar
  18. Vane J. R. (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.Nature (New Biol.)231, 232–235.Google Scholar
  19. Winter C. A., Risley E. A., and Nuss G. W. (1962) Carrageenin-induced edema in the hind paw of rat as an assay for anti-inflammatory drugs.Proc. Soc. Exp. Biol. 111, 544–547.Google Scholar

Copyright information

© The Humana Press Inc. 1984

Authors and Affiliations

  • S. K. Bhattacharya
    • 1
  • Neeta Das
    • 1
  1. 1.Neuropharmacology Laboratory, Department of Pharmacology, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations