Neurochemical Pathology

, Volume 4, Issue 1, pp 23–28 | Cite as

Brain glutathione peroxidase in neurodegenerative disorders

  • Stephen J. Kish
  • Caryl L. H. Morito
  • Oleh Hornykiewicz
Original Articles


Glutathione peroxidase is an enzyme that couples the oxidation of reduced glutathione to the detoxification of peroxides. Alterations in the activity of this component of the glutathione oxygen scavenging system in brain have been reported in several conditions associated with oxidative challenge and/or cellular damage. We measured the activity of glutathione peroxidase in autopsied brain regions of neurologically normal adults and in brain of patients with primary degenerative disorder Alzheimer’s type (AD/SDAT), as well as two other neurodegenerative disorders, namely Huntington’s disease and striatonigral degeneration. No significant alterations in enzyme activity were observed in morphologically normal or abnormal brain regions. Our results suggest that in the three brain disorders studied, the neuronal cell loss is unlikely to result from reduced activity of brain glutathione peroxidase, and that a significant compensatory increase in this brain enzyme, consequent to the degenerative processes, does not occur.

Index Entries

Glutathione peroxidase glutathione peroxides Alzheimer’s disease Huntington’s disease striatonigral degeneration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams R. D. and Victor M. (1984)Principles of Neurology, Second Ed., pp. 794–832, McGraw-Hill, London.Google Scholar
  2. Ambani L. M., van Woert M. H., and Murphy S. (1975) Brain peroxidase and catalase in Parkinson’s disease.Arch. Neurol. 30, 114–118.Google Scholar
  3. Beutler A. (1971)Red cell metabolism: A manual of biochemical methods, pp. 71–73, Grune and Stratton, New York.Google Scholar
  4. Brooksbank B. W. L. and Balasz R. (1983) Superoxide dismutase and lipoperoxidation in Down’s syndrome fetal brain,Lancet i, 881–882.CrossRefGoogle Scholar
  5. Chow C. K., Dillard C. J., and Tappel A. L. (1974) Glutathione peroxidase system and lysozyme in rats exposed to ozone or nitrogen dioxide.Environ. Res. 7, 311–319.CrossRefGoogle Scholar
  6. Cohen G. (1983) The pathobiology of Parkinson’s disease: biochemical aspects of dopamine neuron senescence.J. Neural Transm. Suppl. 19, 89–103.PubMedGoogle Scholar
  7. Forman H. J. and Fisher A. B. (1984) Role of glutathione peroxidase in tolerance and adaptation of rats to hyperoxia, inOxygen Radicals in Chemistry and Biology (Boro W., Savan M., and Tait P., eds.), pp. 699–705, Walter de Gruyter, Berlin.Google Scholar
  8. Halliwell B. and Gutteridge J. M. C. (1985) Oxygen radical and the nervous system.Trends in Neurosci. January, pp. 22–26.CrossRefGoogle Scholar
  9. Harman D. (1984) Free radical theory of aging: the “free radical” diseases.Age 7, 111–131.CrossRefGoogle Scholar
  10. Kaplan E., Bigelow D., Vatassery G., and Ansari K. (1982) Glutathione peroxidase in human cerebrospinal fluid.Brain Res. 252, 391–393.PubMedCrossRefGoogle Scholar
  11. Kish S. J., Morito C., and Hornykiewicz O. (1985) Glutathione peroxidase activity in Parkinson’s disease brain.Neurosci. Lett. 58, 343–346.PubMedCrossRefGoogle Scholar
  12. Marklund S. L., Adolfsson R., Gottfries C. G., and Winblad B. (1985) Superoxide dismutase isoenzymes in normal brains and in brains from patients with dementia of Alzheimer type.J. Neurolog. Sci. 67, 319–325.CrossRefGoogle Scholar
  13. Mizuno Y. (1984a) Changes in superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase activities and thiobarbituric acid—reactive products levels in early stages of development in dystrophic chickens.Environ. Neurol. 84, 58–73.CrossRefGoogle Scholar
  14. Mizuno Y. (1984b) Studies on the pathogenesis of degenerative neurological disorders.Rinsho Shinkeigaku 24, 118–124.PubMedGoogle Scholar
  15. Paglia D. E. and Valentine W. N. (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase.J. Lab. Clin. Med. 70, 158–169.PubMedGoogle Scholar
  16. Perry T. L., Godin D. V., and Hansen S. (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency?Neurosci. Lett. 33, 305–310.PubMedCrossRefGoogle Scholar
  17. Sinet P. M. (1982) Metabolism of oxygen in Down’s syndrome.Ann. NY Acad. Sci. 396, 83–94.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1986

Authors and Affiliations

  • Stephen J. Kish
    • 1
  • Caryl L. H. Morito
    • 2
  • Oleh Hornykiewicz
    • 1
    • 2
  1. 1.Human Brain LaboratoryClarke Institute of PsychiatryTorontoCanada
  2. 2.Institute of Biochemical PharmacologyUniversity of ViennaAustria

Personalised recommendations