Neurochemical Pathology

, Volume 2, Issue 2, pp 103–114 | Cite as

Alzheimer’s disease

A metabolic systems degeneration?
  • John P. Blass
  • Alexander Zemcov
Original Articles


Alzheimer’s disease can be considered a late-onset system degeneration, characteristically involving certain populations of cholinergic neurons but eventually involving other cells as well. Decreases in cerebral metabolic rate occur in it and may reflect not only decreased neuronal activity, but also deficiencies in metabolic enzymes. Abnormalities reported in nonneural Alzheimer tissues suggest that at the molecular level it is a systemic disease whose biochemical aspects can usefully be studied in nonneural tissues. Alzheimer’s disease can be formulated as one of a number of metabolic encephalopathies that impair central cholinergic function.

Index Entries

Alzheimer’s disease metabolic systems degeneration, in Alzheimer’s disease degeneration of, metabolic systems in Alzheimer’s disease cholinergic function, and Alzheimer’s disease 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adolfson, R., Gottfries C. G., Roos B. E., and Winblad B. (1979) Changes in brain catecholamines in patients with dementia of the Alzheimer type.Brit. J. Psychiatry 135, 216–223.Google Scholar
  2. Andria-Waltenbaugh A. M. and Puck T. T. (1977) Alzheimer’s disease: further evidence of a microtubular defect.J. Cell. Biol. 75, 279a.Google Scholar
  3. Averback P. (1983) Two new lesions in Alzheimer disease.Lancet 2, 1203.PubMedCrossRefGoogle Scholar
  4. Bertagnolio B., Uziel G., Bottacchi E., Crenna G., D’Angelo A., and DiDonato S. (1980) Friedreich’s ataxia. II. Biochemical studies in cultured cells.Ital. J. Neurol. Sci. 1, 239–243.PubMedCrossRefGoogle Scholar
  5. Bird E. D., Gale G. S., and Spokes E. G. (1977) Huntington’s chorea: Postmortem activity of enzymes involved in cerebral glucose metabolism.J. Neurochem. 29, 539–546.PubMedCrossRefGoogle Scholar
  6. Blass J. P., Gibson G. E., Duffy T. E., and Plum F. (1981) Cholinergic dysfunction: a common denominator in metabolic encephalopathies, inCholinergic Mechanisms: Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance (Pepeu G. and Ladinsky H., eds.), pp. 921–928. Plenum Press, New York.Google Scholar
  7. Blass J. P., Hanin I., Barclay L., Kopp U., and Reding M. (1984) Elevated red cell to plasma choline ratios in Alzheimer’s disease, inDynamics of Cholinergic Function (Hanin I., ed.), Plenum Press, New York.Google Scholar
  8. Blass J. P., Kark R. A. P., Menon N., and Harris S. H. (1976) Decreased activities of the pyruvate and ketoglutarate dehydrogenase complexes in fibroblasts from five patients with Friedreich’s ataxia.N. Engl. J. Med. 295, 62–66.PubMedCrossRefGoogle Scholar
  9. Blass J. P. and Weksler M. C. (1983) Toward an effective treatment of Alzheimer’s disease.Ann. Intern. Med. 98, 251–253.PubMedGoogle Scholar
  10. Bondareff W., Mountjoy C. Q., and Roth M. (1981) Selective loss of neurones of origin of adrenergic projections to cerebral cortex (nucleus locus coeruleus) in senile dementia.Lancet 1, 783–784.PubMedCrossRefGoogle Scholar
  11. Bowen D. M., Allen S. J., Benton J. S., Goodhart M. J., Haan E. A., Palmer A. M., Sims N. R., Smith C. C. T., Spillane J. A., Esir M. M., Neary D., Snowdon J. S., Wilcock G. K., and Davison A. N. (1983) Biochemical assessment of serotonergic and cholinergic dysfunction and cerebral atrophy in Alzheimer’s disease.J. Neurochem. 41, 266–272.PubMedCrossRefGoogle Scholar
  12. Bowen D. M., Smith C. B., White P., and Davison A. N. (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies.Brain 99, 459–496.PubMedCrossRefGoogle Scholar
  13. Bowen D. M., White P., Spillane J. A., Goodhart M. J., Curzon G., Iwangoff P., Meier-Ruge W., and Davidson A. N. (1979). Accelerated aging or selective neuronal loss as an important cause of dementia.Lancet 1, 11–13.PubMedGoogle Scholar
  14. Browning M., Baudry M., and Lynch G. (1982) Evidence that high-frequency stimulation influences the phosphorylation of pyruvate dehydrogenase, and that the activity of this enzyme is linked to mitochondrial calcium sequestration.Prog. Brain Res. 56, 317–337.PubMedGoogle Scholar
  15. Coyle J. T., Price D. L., and DeLong M. R. (1983) Alzheimer’s disease: A disorder of cortical cholinergic innervation.Science 219, 1184–1190.PubMedCrossRefGoogle Scholar
  16. Crystal H. A. and Davies P. (1982) Cortical substance-P-like immunoreactivity in cases of Alzheimer’s disease and senile dementia of the Alzheimer type.J. Neurochem. 38, 1781–1784.PubMedCrossRefGoogle Scholar
  17. Davies P. and Maloney A. J. F. (1976) Selective loss of central cholinergic neurones in Alzheimer’s disease.Lancet 2, 1403.PubMedCrossRefGoogle Scholar
  18. Diamond J. M., Matsuyama S. S., Meier K., and Jarvik L. F. (1983) Elevation of erythrocyte countertransport in Alzheimer’s dementia.N. Engl. J. Med. 309, 1061–1062.PubMedGoogle Scholar
  19. Dijkstra U. J., Willems J. L., Joosten E. M. G., and Gabreels F. J. M. (1983) Friedreich ataxia and low pyruvate carboxylase activity in liver and fibroblasts.Ann. Neurol. 13, 325–327.PubMedCrossRefGoogle Scholar
  20. Drachman D. A. and Leavitt J. (1974) Human memory and the cholinergic system. Relation to aging.Arch. Neurol. 30, 113–121.PubMedGoogle Scholar
  21. Folstein M. F. and Breitner J. C. S. (1981) Language disorder predicts familial Alzheimer disease.Johns Hopkins Med. J. 149, 145–147.PubMedGoogle Scholar
  22. Foster N. L., Chase T. N., Redio P., Patronas N. J., Brooks R. A., and DiChuro G. (1983) Alzheimer’s disease: Focal cortical changes shown by positron emission tomography.Neurology 33, 961–965.PubMedGoogle Scholar
  23. Garcia C. A., Reding M. J., and Blass J. P. (1981) Overdiagnosis of dementia.J. Am. Geriatr. Soc. 29, 407–410.PubMedGoogle Scholar
  24. Gibson G. E. and Peterson C. (1981) Aging decreases oxidative metabolism and the release and synthesis of acetylcholine.J. Neurochem. 37, 978–984.PubMedCrossRefGoogle Scholar
  25. Gibson G. E. and Peterson C. (1983) Acetylcholine and oxidative metabolism in septum and hippocampus in vitro.J. Biol. Chem. 258, 1142–1145.PubMedGoogle Scholar
  26. Gibson G. E., Pulsinelli W. A., Blass J. P., and Duffy T. E. (1981) Brain dysfunction in mild to moderate hypoxia.Am. J. Med. 70, 1247–1254.PubMedCrossRefGoogle Scholar
  27. Gottfries C. G., Gottfries I., and Ross B. E. (1969) The investigation of homovanillic acid in the human brain and its correlation to senile dementia.Br. J. Psychiatry 115, 563–574.PubMedGoogle Scholar
  28. Hirsch J. A. and Gibson G. E. (1982) Anoxia inhibits release of acetylcholine but not of norepinephrine from rat brain slices.Fed. Proc. 41, 8738.Google Scholar
  29. Ingvar D. H. and Lassen N. A., eds. (1975) The coupling of function, metabolism and blood flow in the brain, pp. 1–523. Munksgaard, Copenhagen.Google Scholar
  30. Jarvik L. F., Matsuyama S.S., Kessler J. O., Fu T. K., Tsai S. Y., and Clark E. O. (1982) Philothermal response of polymorphonuclear leukocytes in dementia of the Alzheimer type.Neurobiol. Aging 3, 93–99.PubMedCrossRefGoogle Scholar
  31. Krause L. J. (1983) Decreased natural killer cell activity in Alzheimer’s disease.Neurosci. Abstr. 9, 115.Google Scholar
  32. Ksiezak-Reding H., Murphy C., and Blass J. P. (1983) Enzyme activities in platelets from patients with Alzheimer disease.Age 6, 11.CrossRefGoogle Scholar
  33. Larsson T., Sjogren T., and Jacobson G. (1983) Senile dementia—A clinical, sociomedical and genetic study.Acta Psychiatr. Scand., Suppl. 167, 39–150.Google Scholar
  34. Lowry O. H. and Passonneau J. V. (1964) The relationships between substrates and enzymes of glycolysis in brain.J. Biol. Chem. 239, 31–42.PubMedGoogle Scholar
  35. Markesberry W. R., Leung P. K., and Butterfield D. A. (1980) Spin label and biochemical studies of erythrocyte membranes in Alzheimer’s disease.J. Neurol. Sci. 45, 232–330.CrossRefGoogle Scholar
  36. Miller A. E., Neighbour P. A., Katzman R., Aronson M., and Lipkowitz R. (1981) Immunologic studies in senile dementia of the Alzheimer type: Evidence of enhanced suppressor cell activity.Ann. Neurol. 10, 506–510.PubMedCrossRefGoogle Scholar
  37. Nordenson I., Adolfson R., Beckman G., Bucht G., and Winblad G. (1980) Chromosomal abnormality in dementia of Alzheimer type.Lancet 1, 481–482.PubMedCrossRefGoogle Scholar
  38. Perry E. K., Perry R. H., Blessed G., and Tomlinson B. E. (1977) Necropsy evidence of central cholinergic deficits in senile dementia.Lancet 2, 189.CrossRefGoogle Scholar
  39. Perry E. K., Perry R. H., Tomlinson B. E., Blessed G., and Gibson P. H. (1980) Coenzyme-A-acetylating enzymes in Alzheimer’s disease: possible cholinergic “compartment” of pyruvate dehydrogenase.Neurosci. Lett. 18, 105–110.PubMedCrossRefGoogle Scholar
  40. Perry E. K., Tomlinson B. E., Blessed G., Perry R. H., Cross A. J., and Crow T. (1981) Noradrenergic and cholinergic systems in senile dementia of Alzheimer type.Lancet 2, 149.PubMedCrossRefGoogle Scholar
  41. Perry R. H., Wilson I. E., Bober M. J., Atack J., Blessed G., Tomlinson B. E., and Perry E. K. (1982) Plasma and erythrocyte acetylcholinesterase in senile dementia of Alzheimer type.Lancet 1, 174–175.PubMedCrossRefGoogle Scholar
  42. Plaitakis A., Berl S., and Yahr M. O. (1984) Neurological disorders associated with deficiency of glutamate dehydrogenase.Ann. Neurol. 15, 144–153.PubMedCrossRefGoogle Scholar
  43. Prusiner S. B., McKinley M. P., Bowman K. A., Bolton D. C., Bendheim P. E., Groth D. F., and Glenner G. S. (1983) Scrapie prions aggregate to form amyloid-like birefringent rods.Cell 35, 349–358.PubMedCrossRefGoogle Scholar
  44. Reding M. J., Haycox J., Wigforss K., Brush D., and Blass J. P. (1984) Outcome of patients referred to a dementia service.J. Am. Geriatr. Soc. (in press).Google Scholar
  45. Risberg J. (1980) Regional cerebral blood flow measurements by133Xe-inhalation: methodology and applications in neuropsychology and psychiatry.Brain Lang. 9, 9–34.PubMedCrossRefGoogle Scholar
  46. Robbins J. H., Otsuka F., Tarone R. E., Polinsky R. J., Brunback R. A., Moshell A. N., Nee L. E., Ganges M. B., and Cayeux S. T. (1983) Radiosensitivity in Alzheimer disease and Parkinson disease.Lancet 1, 468–469.PubMedCrossRefGoogle Scholar
  47. Ropper A. H. and Williams R. S. (1980) Relationship between plaques, tangles and dementia in Down syndrome.Neurology 30, 639–644.PubMedGoogle Scholar
  48. Rosser M. N. (1981) Parkinson’s disease and Alzheimer’s disease: disorders of the isodendritic core.Br. Med. J. 283, 1588–1590.Google Scholar
  49. Routtenberg A. (1982) Identification and back titration of brain pyruvate dehydrogenase: functional significance for behavior.Prog. Brain Res. 56, 349–374.PubMedCrossRefGoogle Scholar
  50. Siesjo B. K. (1978)Brain Energy Metabolism, Wiley, New York.Google Scholar
  51. Sims N. R., Bowen D. M., Allen S. J., Smith C. T. T., Neary D., Thomas D. J., and Davison A. N. (1983a) Presynaptic cholinergic dysfunction in patients with dementia.J. Neurochem. 40, 503–509.PubMedCrossRefGoogle Scholar
  52. Sims N. R., Bowen D. M., Neary D., and Davison A. N. (1983b) Metabolic processes in Alzheimer’s disease: Adenine nucleotide content and production of14CO2 from [U-14C]glucose in vitro in human neocortex.J. Neurochem. 41, 1329–1334.PubMedCrossRefGoogle Scholar
  53. Sokoloff L. (1966) Cerebral circulatory and metabolic changes associated with aging.Res. Publ. Assoc. Res. Nerv. Ment. Dis. 41, 237–265.PubMedGoogle Scholar
  54. Sorbi S., Bird E. D., and Blass J. P. (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain.Ann. Neurol. 13, 72–78.PubMedCrossRefGoogle Scholar
  55. Stumpf D. A., Parks J. K., Eguren L. A., and Haas R. (1982) Friedreich ataxia. III. Mitochondrial malic enzyme deficiency.Neurology 32, 221–228.PubMedGoogle Scholar
  56. Terry R. D. (1978) Senile dementia.Fed. Proc. 37, 2837–2840.PubMedGoogle Scholar
  57. Terry R. D., Peck A., DeTeresa R., Schechter R., and Horoupian D. S. (1981) Some morphometric aspects of the brain in senile dementia of the Alzheimer type.Ann. Neurol. 10, 184–192.PubMedCrossRefGoogle Scholar
  58. Thomas L. (1981) On the problem of dementia.Discover (Aug.) 34–36.Google Scholar
  59. Zemcov A., Risberg J., Barclay L., and Blass, J. P. (1983) A double-blind study of rCBF in the differential diagnosis of dementias.Eur. Neurol. 22, 20.Google Scholar

Copyright information

© The Humana Press Inc. 1984

Authors and Affiliations

  • John P. Blass
    • 1
  • Alexander Zemcov
    • 1
  1. 1.Burke Rehabilitation CenterCornell University Medical College

Personalised recommendations