Neurochemical Pathology

, Volume 1, Issue 2, pp 125–135 | Cite as

A central cholinergic deficit in rats with dietary thiamin deficiency

  • Gary E. Gibson
  • Carol Pelmas
  • John P. Blass


Dietary thiamin deficiency decreased the performance of rats on a standardized tight rope test. After 10 d of treatment, the scores of one-third of the treated rats declined by four or more points. Injections of thiamin or the acetylcholinesterase inhibitor, physostigmine, partially ameliorated the behavioral deficits; physostigmine was as effective as thiamin. Nicotinic (mecamylamine) and muscarinic (atropine) cholinergic antagonists that act on the central and peripheral nervous system blocked the beneficial effects of physostigmine. However, the peripheral muscarinic cholinergic blocker methatropine did not alter physostigmine’s actions. Thus, dietary thiamin deprivation appears to produce a physiologically important cholinergic deficit in the central nervous system.

Index Entries

Acetylcholine, and thiamin deficiency thiamin deficiency, and the cholinergic system behavior, and thiamin deficiency dementia, and thiamin deficiency metabolic encephalopathy, and thiamin deficiency vitamin B-1, and cholinergic deficit 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barclay, L. L., Gibson, G. E. and Blass, J. P. (1981a) The string test: an early behavioral change in thiamine deficiency.Pharmacol. Biochem. Behav. 14, 153–157.PubMedCrossRefGoogle Scholar
  2. Barclay, L. L., Gibson, G. E., and Blass, J. P. (1981b) Impairment of behavior and acetylcholine metabolism in thiamine deficiency.J. Pharmacol. Exp. Ther. 217, 537–543.PubMedGoogle Scholar
  3. Barclay, L. L., Gibson, G. E., and Blass, J. P. (1982) Cholinergic therapy of abnormal open-field behavior in thiamin-deficient rats.J. Nutr. 112, 1906–1913.PubMedGoogle Scholar
  4. Blass, J. P., Gibson, G. E., Duffy, T. E., and Plum, F. (1981). Cholinergic dysfunction: a common denominator in metabolic encephalopathies, inCholinergic Mechanisms: Phylogenetic Aspects, Central and Peripheral Synapses, and Clinical Significance (Pepeu, G., and Ladinsky, H., eds.), pp. 921–928. Plenum Press, New York.Google Scholar
  5. Cheney, D. L., Gubler, C. J., and Jaussi, A. W. (1969) Production of acetylcholine in rat brain following thiamin deprivation and treatment with thiamin antagonists.J. Neurochem. 16, 1283–1291.PubMedCrossRefGoogle Scholar
  6. Eder, L., and Dunant, Y. (1980). Thiamine and cholinergic transmission in the electric organ of torpedo.J. Neurochem. 35, 1278–1286.PubMedCrossRefGoogle Scholar
  7. Eder, L., Dunant, Y., and Loctin, F. (1980). Thiamine and cholinergic transmission in the electric organ of torpedo.J. Neurochem. 35, 1287–1296.PubMedCrossRefGoogle Scholar
  8. Gibson, G. E., Barclay, L. L. and Blass, J. P. (1982). The role of the cholinergic system in thiamin deficiency.Ann. NY Acad. Sci. 378, 382–403.PubMedCrossRefGoogle Scholar
  9. Gibson, G. E., Jope R., and Blass, J. P. (1975). Reduced syntheses of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces.Biochem. J. 148, 17–23.PubMedGoogle Scholar
  10. Gibson, G. E., Pelmas, C. J., and Peterson, C. (1983). Cholinergic drugs and 4-aminopyridine alter hypoxic-induced behavioral deficits.Pharm. Biochem. Behav. 18, 909–916.CrossRefGoogle Scholar
  11. Gibson, G. E., and Shimada, M. (1981) Studies on the metabolic pathway of the acetyl group for acetylcholine synthesis.Biochem. Pharmacol. 29, 167–174.CrossRefGoogle Scholar
  12. Kinnersley, H. W., and Peters, R. A. (1929). Observations upon carbohydrate metabolism in birds. I. The relation between the lactic acid content of the brain and the symptoms of opisthotonus in rice-fed pigeons.Biochem. J. 23, 1126–1136.PubMedGoogle Scholar
  13. Mann, P. J. G., and Quastel, J. H. (1940). Vitamin B1 and acetylcholine formation in isolated brain.Nature 145, 856–857.CrossRefGoogle Scholar
  14. Maurer, S. (1935). The effect of partial depletion of vitamin B (B1) upon performance of rats.J. Comp. Psychol. 20, 309–317.CrossRefGoogle Scholar
  15. Mesulam, M., Van Hoesen, G., and Butters, N. (1977). Clinical manifestations of chronic thiamin deficiency in the rhesus monkey.Neurology 27, 239–245.PubMedGoogle Scholar
  16. Plaitakis, A., Nicklas, W., and Berl, S. (1978). Thiamin deficiency: selective impairment of the cerebellar serotonergic system.Neurology 28, 691–698.PubMedGoogle Scholar
  17. Plum, F., and Posner, J. B. (1980).The Diagnosis of Stupor and Coma, 3rd. Ed. Davis, Philadelphia.Google Scholar
  18. Poe, F., Poe, C. F., and Muenzinger K. F. (1937). The effect of vitamin deficiency upon the acquisition of retention of the maze habit in the white rat. III. Vitamin B1.J. Comp. Psychol. 23, 67–76.CrossRefGoogle Scholar
  19. Steele, R. G. D., and Torrie, J. H. (1960).Principles and Procedures of Statistics. McGraw-Hill, New York.Google Scholar
  20. Stevens, H. (1937). Avitaminosis B (B1), maze performance and certain aspects of brain chemistry.J. Comp. Psychol. 24, 441–458.CrossRefGoogle Scholar
  21. Victor, M., Adams, R. D., and Collins, G. H. (1971).The Wernicke-Korsakoff Syndrome. Davis, Philadelphia, Pa.Google Scholar
  22. Vorhees, C. V., Barrett, R. J., and Schenker, S. (1975). Increased muricide and decreased avoidance and discrimination learning in thiamin deficient rats.Life Sci. 16, 1187–1199.PubMedCrossRefGoogle Scholar
  23. Vorhees, C. V., Schmidt, D. E., Barrett, R. J., and Schenker, S. (1977). Effect of thiamin deficiency on acetylcholine levels and utilizationin vivo in rat brain.J. Nutr. 107, 1902–1908.PubMedGoogle Scholar
  24. Watanabe, I. (1978). Pyrithiamin-induced acute thiamin-deficient encephalopathy in the mouse.Exp. Mol. Pathol. 28, 381–394.PubMedCrossRefGoogle Scholar

Copyright information

© The Humana Press Inc. 1983

Authors and Affiliations

  • Gary E. Gibson
    • 1
  • Carol Pelmas
    • 1
  • John P. Blass
    • 1
  1. 1.Department of Neurology, Cornell University Medical CollegeBurke Rehabilitation CenterWhite Plains

Personalised recommendations