Neurochemical Pathology

, Volume 1, Issue 1, pp 43–57 | Cite as

Energy-producing machinery in vasogenic brain edema

  • M. Rigoulet
  • N. Averet
  • F. Cohadon


This paper investigates the functioning of mitochondrial energy-producing machinery in cold-induced edema and the level of energy charge available within the cell for cation transport.

Direct measurements of mitochondrial ATP production in vasogenic brain edema are carried out by testing different metabolic pathways.

In our model (freezing lesion edema), substrate level phosphorylation is not affected by the cold injury. However, when the respiratory substrates are glutamate + malate or pyruvate + malate, the inhibition of ATP production in mitochondria isolated from edematous cells reflects the decrease of oligomycin-sensitive ATPase. The larger inhibition of the succinate dehydrogenase activity seems to affect only the phosphorylations coupled to succinate oxidation.

Alternative transmembranal metabolic pathways (i.e., aspartate-malate shuttle, pyruvate cycle) bypassing the step might be operating in these edematous cells and play an important energetic role. Indeed, under in vivo conditions, the energy charge remains normal and the ATP/ADP ratio higher than normal during edema expansion.

These results are consistent with a large decrease in Na+, K+-ATPase function (Rigoulet et al., 1979), which normally uses an important part of available ATP.

We conclude that the development of intracellular edema is caused by the breakdown of Na+, K+-ATPase and not by a shortage of high energy compounds.

Index Entries

Energy producing machinery, in brain edema brain edema, energy producing machinery in edema, energy producing machinery in brain vasogenic brain edema, energy producing machinery in 



adenylic nucleotides


carbonyl cyanide m-chlorophenylhydrazone


2,6-dichlorophenol indophenol


inorganic phosphate


phenazine methosulfate


regional cerebral blood flow


trichloroacetic acid


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson D. E. (1968) The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers.Biochemistry,7, 4030–4034.PubMedCrossRefGoogle Scholar
  2. Berry M. N. (1980) The function of energy-dependent redox reactions in cell metabolism.FEBS Lett. suppl. 117, K106-K120.CrossRefGoogle Scholar
  3. Blakemore W. F. (1971) The ultrastructural appearance of astrocytes following thermal lesions of the rat cortex.J. Neurol. Sci. 12, 319–332.PubMedCrossRefGoogle Scholar
  4. Borst P. (1963) Hydrogen transport and transport. inFunctionnelle und Morphologische Organization der Zelle (Karlson P., ed.), pp. 137–162, Springer-Verlag, Berlin.Google Scholar
  5. Clark J. B. and Nicklas W. J. (1970) The metablism of rat brain mitochondria: preparation and characterization.J. Biol. Chem. 245, 4724–4731.PubMedGoogle Scholar
  6. Demopoulos H. B., Flamm E. S., Seligman M. L., Mitamura J. A., and Ransohoff J. (1979) Membrane perturbations in central nervous system injury: theoretical basis for free radical damage and a review of the experimental data. InNeural Trauma (Popp A.J., Bourke R.S., Nelson L.R., and Kimelberg, H.K., eds.), pp. 63–78. Raven Press, New-York.Google Scholar
  7. Dennis S. C. and Clark J. B. (1978) The regulation of glutamate metabolism by tricarboxylic acid cycle activity in rat brain mitochondria.Biochem. J. 172, 155–162.PubMedGoogle Scholar
  8. Frei H. J., Wallenfang Th., Poll W., Reulen H. J., Schubert R., and Brock M. (1973) Regional cerebral flow and regional metabolism in cold-induced edema.Acta Neurochir. 29, 15–28.CrossRefGoogle Scholar
  9. Go K. G., Zijlstra W. G., Flanderijn H., and Zuiderveen F. (1974) Circulatory factors influencing exudation in cold-induced cerebral edema.Exp. Neurol. 42, 332–338.PubMedCrossRefGoogle Scholar
  10. Golberg N. D., Passonneau J. V., and Lowry O. H. (1966) Effects of changes in brain metabolism on the levels of citric acid cycle intermediates.J. Biol. Chem. 241, 3997–4003.Google Scholar
  11. Grote J., Reulen H. J., and Schubert R. (1978) Increased tissue water in the brain influence on regional cerebral blood flow and oxygen supply.Adv. Neurol. 20, 333–339.PubMedGoogle Scholar
  12. Holian A., Owen C. S., and Wilson D. F. (1977) Control of respiration in isolated mitochondria: quantitative evaluation of the dependence of respiratory rates on (ATP), (ADP) and (Pi).Arch. Biochem. Biophys. 181, 164–171.PubMedCrossRefGoogle Scholar
  13. Holian A. and Wilson D. F. (1980) Relationship of transmembrane pH and electrical gradients with respiration and ademine 5′-triphosphate synthesis in mitochondria.Biochemistry 19, 4213–4221.PubMedCrossRefGoogle Scholar
  14. Keesey J. C. and Wallgren H. (1965) Movements of radioactive sodium in cerebral cortex slices in response to electrical stimulation.Biochem. J. 95, 301–310.PubMedGoogle Scholar
  15. Klatzo I., Wisniewski H., and Smith D. E. (1965) Observations on penetration of serum proteins into the central nervous system. InProgress in Brain Research, Vol. 15, Biology of Neuroglia (De Robertis E. D. P. and Carrea R., eds.) pp. 73–88, Elsevier, Amsterdam.Google Scholar
  16. Klatzo I. (1967) Neuropathological aspects of brain edema.J. Neuropath. Exp. Neurol. 26, 1–14.PubMedCrossRefGoogle Scholar
  17. Klatzo I., Chui E., Feijiwara K., and Spatz M. (1980) Resolution of vasogenic brain edema. InAdvances in Neurology, Vol. 28, Brain Edema (Cervos-Navarro J. and Ferszt R., eds.) pp. 359–373, Raven Press, New York.Google Scholar
  18. Lee J. C. and Bakay L. (1966) Ultrastructural changes in edematous central nervous system.Arch. Neurol. 14, 36–49.PubMedGoogle Scholar
  19. Ljunggren B., Schutze H., and Siesjö B. K. (1974) Changes in energy state and acid-base parameters of the rat brain during complete compression ischemia.Brain Res. 73, 277–289.PubMedCrossRefGoogle Scholar
  20. Lowry O. H., Passonneau J. V., Hasselberger F. X., and Schulz H. (1964) Effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain.J. Biol. Chem. 239, 18–30.PubMedGoogle Scholar
  21. Lundin A., Richardsson A., and Thore A. (1976) Continuous monitoring of ATP-converting reactions by purified firefly luciferase.Anal. Biochem. 75, 611–620.PubMedCrossRefGoogle Scholar
  22. Marmarou A., Takagi H., and Shulman K. (1980) Biomechanics of brain edema and effects on local cerebral blood flow. in:Advances in Neurology, Vol. 28, Brain Edema (Cervos-Navarro J. and Ferszt R., eds.), pp. 345–358, Raven Press, New York.Google Scholar
  23. Meijer A. J. and Van Dam K. (1974) The metabolic significance of anion transport in mitochondria.Biochim. Biophys. Acta 364, 213–244.Google Scholar
  24. Nelson S. R. and Mantz M. L. (1971) Energy reserve levels in edematous mouse brain.Exp. Neurol. 31, 53–59.PubMedCrossRefGoogle Scholar
  25. Nicholls D. G. and Bernson S. M. (1977) Interrelationships between proton electrochemical gradient, adeninenucleotide phosphorylation potential and respiration, during substrate level and oxidative phosphorylation by mitochondria from brown adipose tissue of cold-adapted guinea-pigs.Eur. J. Biochem. 75, 601–612.PubMedCrossRefGoogle Scholar
  26. Ozawa K., Itada N., Kuno S., Seta K., Handa H., and Araki C. (1966) Biochemical studies on brain swelling. I. Changes in respiratory control, 2,4-dinitrophenol induced ATPase activity and phosphorylation. Correlation between brain swelling and mitochondrial function.Folia Psychiatr. Neurol. Japonica 20, 57–72.Google Scholar
  27. Reulen H. J., Medzihrady F., Enzenbach R., Marguth F., and Brendel W. (1969) Electrolytes, fluids, and energy metabolism in human cerebral edema.Arch. Neurol. 21, 517–525.PubMedGoogle Scholar
  28. Reulen H. J. (1976) Vasogenic brain edema. New aspects in its formation, resolution and therapy.Br. J. Anaesth. 48, 741–752.PubMedCrossRefGoogle Scholar
  29. Ridge J. W. (1972) Hypoxia and the energy charge of the cerebral adenylate pool.Biochem. J. 127, 351–355.PubMedGoogle Scholar
  30. Rigoulet M., Guerin B., Cohadon F., and Vandendriessche M. (1979) Unilateral brain injury in the rabbit: reversible and irreversible damage of the membranal ATPases.J. Neurochem. 32, 535–541.PubMedCrossRefGoogle Scholar
  31. Robinson B. H., Williams G. R., Halperin M. L., and Leznoff C. C. (1971) The sensitivity of the exchange reactions of tricarboxylate, 2-oxoglutarate and dicarboxylate transporting systems of rat liver mitochondria to inhibition by 2-pentylmalonate,p-iodobenzylmalonate and benzene 1,2,3-tricarboxylate.Eur. J. Biochem. 20, 65–71.PubMedCrossRefGoogle Scholar
  32. Rosenthal M., Martel D., Lamanna J. C., and Jobsis F. F. (1976)In situ studies of oxidative energy metabolism during transient cortical ischemia in cats.Exp. Neurol. 50, 477–494.PubMedCrossRefGoogle Scholar
  33. Sato K., Yamaguichi M., Mullan S., Evan J. P., and Ishii S. (1969) Brain edema a study of biochemical and structural alterations.Arch. Neurol. 21, 413–424.PubMedGoogle Scholar
  34. Singer T. P., Rocca E. and Kearney E. B. (1966) Fumarate reductase, succinate and NADH dehydrogenase of yeast: properties and biosynthesis. InFlavins and Flavoproteins (Slater B. C., ed.), pp. 391–426, Elsevier, Amsterdam, London, New York.Google Scholar
  35. Sutton L. N., Welsh F., and Bruce D. A. (1980) Bioenergetics of acute vasogenic edema.J. Neurosurg. 53, 470–476.PubMedGoogle Scholar
  36. Veech R. L., Lawson J. W. R., Cornell N. W., and Krebs H. A. (1979) Cytosolic phosphorylation potential.J. Biol. Chem. 254, 6538–6547.PubMedGoogle Scholar
  37. Whittam R. (1962) The dependence of the respiration of brain cortex on active cation transport.Biochemistry 82, 205–212.Google Scholar

Copyright information

© The Humana Press Inc 1983

Authors and Affiliations

  • M. Rigoulet
    • 1
  • N. Averet
    • 1
  • F. Cohadon
    • 1
  1. 1.Department de Neurochirurgie Expérimentale et de NeurobiologieUniversité de Bordeaux II, ERA-CNRS 843Bordeaux CedexFrance

Personalised recommendations