Journal of Materials Engineering

, Volume 11, Issue 1, pp 37–43 | Cite as

The effects of grain size on the magnetic properties of nonoriented electrical steel sheets

  • M. Shiozaki
  • Y. Kurosaki


The effects of grain size on magnetic properties of nonoriented electrical steel sheets were investigated at the commercial power of frequency (50 Hz). The permeability, magnetic induction, and core loss of test specimens were optimal at their intermediate grain sizes. (LC) core loss W15/50 of Epstein specimens was minimum at a grain diameter of approximately 150 μm, regardless of the silicon content. A study of the relationship between magnetic properties and grain size of ring specimens showed that core loss, magnetic induction, and ac permeability were optimal at larger grain diameters in a weak magnetic field and at smaller grain diameters in a strong magnetic field. It was found that magnetic induction and ac permeability tended to improve at large grain diameters in the irreversible magnetization range and at small grain diameters in the rotation magnetization range.


Magnetic Induction Silicon Content Strong Magnetic Field Weak Magnetic Field Core Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.E. Ruder, U.S. Patent 1,110,010.Google Scholar
  2. 2.
    T.D. Yensen, Trans. AIEE, 43, pp. 145–175, 1924.Google Scholar
  3. 3.
    T.D. Yensen and N.A. Ziegler, Trans. ASM, 23, pp. 556–576, 1935.Google Scholar
  4. 4.
    T.D. Yensen and N.A. Ziegler, Trans. ASM, 24, pp. 337–358, 1936.Google Scholar
  5. 5.
    ASTM Standard A 596-69 (Reapproved 1979).Google Scholar
  6. 6.
    S. Chikazumi, inPhysics of Ferromagnetism, pp. 174–175, Syokabo, Tokyo, 1962.Google Scholar
  7. 7.
    P.L. Charpentier and J.H. Bucher,Mechanical Working and Steel Processing, 10, pp. 61–98, AIME, 1972.Google Scholar
  8. 8.
    I.D. Zaydman and L.V. Mironov,Fiz. Metal. Metalloved., 35, No. 4, pp. 844–848, 1973.Google Scholar
  9. 9.
    M. Candiotti and G. Rocci, BOLLETTINO TECHNICO FINSIDER, No. 362, pp. 265–273 1977.Google Scholar
  10. 10.
    S. Taguchi,in Electrical Steel Sheets, ed. S. Taguchi, p. 33, Nippon Steel Corp., Tokyo, 1979.Google Scholar
  11. 11.
    R.R. Judd and K.E. Blazek, inEnergy Efficient Electrical Steels, ed. A.R. Marder and E.T. Stephenson, pp. 147–155, TMS-AIME, 1981.Google Scholar
  12. 12.
    H. Shimanaka, Y. Ito, T. Irie, K. Matsumura, H. Nakamura, and Y. Shono, inEnergy Efficient Electrical Steels, ed. A.R. Marder and E.T. Stephenson, pp. 193–204, TMS-AIME, 1981.Google Scholar
  13. 13.
    F. Böiling, H. Pottgiesser, and K. Schmidt, Stahl u. Eisen, 102, pp. 833–837, 1982.Google Scholar
  14. 14.
    K. Matsumura and B. Fukuda, IEEE Trans. Mag., MAG-20, pp. 1533–1538, 1984.CrossRefGoogle Scholar
  15. 15.
    P.K. Rastogi and G. Lyudkovsky, IEEE Trans Mag.,MAG-20, p. 1539–1541, 1984.CrossRefGoogle Scholar
  16. 16.
    K. Honma, T. Nozawa, H. Kobayashi, Y. Shimoyama, I. Tachino, and K. Miyoshi, IEEE Trans. Magn.,MAG-21, pp. 1903–1908, 1985.CrossRefGoogle Scholar
  17. 17.
    E.T. Stephenson, and A.R. Marder, IEEE Trans. Mag.,MAG-22, pp. 101–105, 1986.CrossRefGoogle Scholar
  18. 18.
    F. Böiling, M. Espenhahn, K. Günther, M. Hastenrath, and H. Huneus, Stahl u. Eisen,107, pp. 1119–1124, 1987.Google Scholar
  19. 19.
    N. Yurioka, T. Sakai, and O. Honjyou, Japanese Patent Toku-kou-shou 48-19048, 1973.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • M. Shiozaki
    • 1
  • Y. Kurosaki
    • 1
  1. 1.Hirohata R&D LaboratoriesHirohata Works, Nippon Steel CorporationHirohata-Ku, Himeji CityJapan

Personalised recommendations