Advertisement

Journal of Materials for Energy Systems

, Volume 7, Issue 3, pp 237–245 | Cite as

Mechanisms of stress corrosion cracking and intergranular attack in alloy 600 in high temperature caustic and pure water

  • R. Bandy
  • D. Vanrooyen
Article

Abstract

In recent years, several studies have been conducted on the intergranular stress corrosion cracking (SCC) and intergranular attack (IGA) of Alloy 600. A combination of SCC and IGA has been observed in Alloy 600 tubing on the hot leg of some operating steam generators in pressurized water reactor (PWR) nuclear power plants, and sodium hydroxide along with several other chemical species have been implicated in the tube degradations. SCC has been observed above and within the tube sheet, whereas IGA is generally localized within the tube sheet. Alloy 600 is also susceptible to SCC in pure and primary water. Various factors that influence SCC and IGA include metallurgical conditions of the alloy, concentrations of alkaline species, impurity content of the environment, temperature, and stress. The mechanisms of these intergranular failures, however, are not well understood. Some of the possible mechanisms of the SCC and IGA in high temperature water and caustic are described in this paper.

Keywords

Stress Corrosion Crack High Temperature Water Crack Propagation Rate Solution Anneal Intergranular Attack 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. J. Green and J. P. N. Paine:Nuclear Technology, 1981, vol. 55, p. 10.Google Scholar
  2. 2.
    G.P. Airey and F.W. Pement:Corrosion, 1983, vol. 39, p. 46.Google Scholar
  3. 3.
    T. S. Bulischeck and D. van Rooyen:Nuclear Technology, 1981, vol. 55, p. 383.Google Scholar
  4. 4.
    R. Bandy and D. van Rooyen:Corrosion, 1984, vol. 40, p. 425.Google Scholar
  5. 5.
    G.J. Theus and J.R. Cels:Stress Corrosion Cracking — The Slow Strain-Rate Technique, ASTM STP 665, G. M. Ugiansky and J.H. Payer, eds., ASTM, 1979, pp. 81–96.Google Scholar
  6. 6.
    N. Pessall:Corrosion Science, 1980, vol. 20, p. 225.CrossRefGoogle Scholar
  7. 7.
    Ph. Berge, J. R. Donati, B. Prieux, and D. Villard:Corrosion, 1977, vol. 33, p. 425.Google Scholar
  8. 8.
    A.A. Seys and A.A. Van Haute:Corrosion, 1973, vol. 29, p. 329.Google Scholar
  9. 9.
    Y. S. Park, J. R. Galvele, A. K. Agrawal, and R. W. Staehle:Corrosion, 1978, vol. 34, p. 413.Google Scholar
  10. 10.
    R. Bandy and D. van Rooyen:Corrosion, 1984, vol. 40, p. 281.Google Scholar
  11. 11.
    A.J. Sedriks, S. Floreen, and A.R. McIlree:Corrosion, 1976, vol. 32, p. 157.Google Scholar
  12. 12.
    D. A. Vermilyea: “A Film Rupture Model for Stress Corrosion Cracking,” inStress Corrosion Cracking and Hydrogen Embrittlement of Iron Base Alloys, Firminy, France, June 12–16, 1973, p. 208.Google Scholar
  13. 13.
    E. N. Pugh: “A Film Rupture Model for Stress Corrosion Cracking,” inStress Corrosion and Hydrogen Embrittlement of Iron Base Alloys, Firminy, France, June 12–16, 1973, p. 37.Google Scholar
  14. 14.
    S.F. Bubar and D. A. Vermilyea:J. Electrochem. Soc, 1966, vol. 113, p. 892.CrossRefGoogle Scholar
  15. 15.
    J. Crum: Paper No. 178,Corrosion ’84, New Orleans, LA, April 2–6, 1984.Google Scholar
  16. 16.
    R.L. Cowan and R.W. Staehle:J. Electrochem. Soc, 1971, vol. 118, p. 557.CrossRefGoogle Scholar
  17. 17.
    Ph. Berge and J.R. Donati:Nuclear Technology, 1981, vol. 55, p. 88.Google Scholar
  18. 18.
    R. L. Cowan and C. S. Tedmon:Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1973, vol. 3, p. 293.Google Scholar
  19. 19.
    M.O. Speidel:The Theory of Stress Corrosion Cracking in Alloys, J.C. Scully, ed., NATO, 1971, p. 289.Google Scholar
  20. 20.
    M. J. Blackburn, J. A. Feeny, and T. R. Beck:Advances in Corrosion Science and Technology, M.G. Fontana and R.W. Staehle, eds., Plenum Press, New York, NY, 1973, vol. 3, p. 148.Google Scholar
  21. 21.
    N. Ohtani and Y. Hayashi:Passivity and its Breakdown on Iron and Iron Base Alloys, USA-Japan Seminar, R. W. Staehle and H. Okada, eds., 1976, p. 169.Google Scholar

Copyright information

© American Society for Metals 1979

Authors and Affiliations

  • R. Bandy
    • 1
  • D. Vanrooyen
    • 1
  1. 1.Brookhaven National LaboratoryUpton

Personalised recommendations