Journal of Heat Treating

, Volume 2, Issue 3, pp 232–237 | Cite as

The fatigue characteristics of Plasma Nitrided three Pct Cr-Mo steel

  • T. Bell
  • N. L. Loh


The plasma nitriding conditions necessary to treat a three pct Cr-Mo steel with and without the formation of a surface compound layer have been investigated and the influence of this compound layer on the fatigue limit is described. The nitrided case depth has been varied as a function of time at a constant temperature of 480 °C and the corresponding rotating bending fatigue strength evaluated. This data has been used to develop a simple model to describe the influence of the case depth on the fatigue limit.


Fatigue Fatigue Strength Fatigue Limit Compound Layer Case Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bell, S. P. Evans, B. Birch, and V. Korotchenko:Heat Treatment, The Metals Society, 1973, pp. 51–58.Google Scholar
  2. 2.
    B. Edenhofer:Heat Treatment of Metals, 1974, vol. 1, pp. 23–28.Google Scholar
  3. 3.
    T. Bell and V. Korotchenko:Heat Treatment of Metals, 1978, vol. 4, pp. 88–94.Google Scholar
  4. 4.
    A. M. Staines and T. Bell:Heat Treatment—Methods and Media, Institution of Metallurgists, 1979.Google Scholar
  5. 5.
    O. I. Butenko, V. B. Dalisov, Yu. M. Lakhtin, V. I. Polhmurskii, and A. M. Shlyafirner: “The Effect of Ionic Nitriding on the Fatigue Limit of Steel 38KhMY uA,”Fiz. Khim. Mek. Mater., vol. 6, no. 8, pp. 88-89.Google Scholar
  6. 6.
    I. Young: Conf. Century 2, International Power Transmissions and Gearing Conference,A.S.M.E., San Francisco, CA, 1980.Google Scholar
  7. 7.
    D. H. Thomas: Ph. D. Thesis, University of Liverpool, 1979.Google Scholar
  8. 8.
    Private Communication: Klockner Ionon Gmbh.Google Scholar
  9. 9.
    K. Wellinger: Archiv, für das Eisenhüttenwesen, 1952, vol. 23, nos. 5 and 6, pp. 203–05.Google Scholar
  10. 10.
    B. Finnern and H. Krzyminski:Harterei-Technische Mitteilungen, 1967, vol. 22, pp. 173–77.Google Scholar
  11. 11.
    B.K. Jones and J.W. Martin:Metals Technology, 1978, vol. 5, no. 7, pp. 217–21.Google Scholar
  12. 12.
    J.G.R. Woodvine: Carnegie Scholarship Memoirs, 1924, vol. 13, pp. 197–237.Google Scholar
  13. 13.
    T. Isibasi:Proc. 1st Japan Congress on Testing Materials, 1958, pp. 37–40.Google Scholar
  14. 14.
    P. Paris and F. Erdogan:Trans. A.S.M.E., 1963, vol. 85, series D, pp. 528–34.Google Scholar
  15. 15.
    N. L. Loh: Ph.D. Thesis, University of Liverpool, 1980.Google Scholar
  16. 16.
    J.M. Cowling and J.W. Martin:Heat Treatment, The Metals Society, (Preprint paper 33), 1979, pp. 52–55.Google Scholar
  17. 17.
    B.K. Jones and J.W. Martin:Metals Technology, 1977, vol. 4, pp. 520–23.Google Scholar
  18. 18.
    J.M. Lessells:Strength of Resistance of Metals, John Wiley, New York, NY, 1954, pp. 251–52.Google Scholar
  19. 19.
    R. W. Landgraf and R. H. Richman: “Fatigue Behaviour of Carburised Steel”, ASTM STP 569, p. 130.Google Scholar

Copyright information

© American Society for Metals 1982

Authors and Affiliations

  • T. Bell
    • 1
  • N. L. Loh
    • 2
  1. 1.Department of Metallurgy and MaterialsUniversity of BirminghamEngland
  2. 2.Department of Metallurgy and Materials ScienceUniversity of LiverpoolEngland

Personalised recommendations