Advertisement

Journal of Heat Treating

, Volume 3, Issue 4, pp 353–355 | Cite as

Effect of room temperature aging on low temperature transformation of retained austenite

  • R. L. Banerjee
Article

Abstract

The effect of room temperature aging on the stabilization and low temperature transformation of retained austenite in a low alloy steel (SAE 52100) was studied. It was found that the amount of retained austenite which transformed on subcooling to 250 °K, 200 °K, and 150 °K decreased rather rapidly as the aging time at room temperature prior to cooling was extended up to 16 hours. Little retained austenite transformed by further extending the aging time at room temperature beyond 16 hours.

Keywords

Austenite Martensite Aging Time Plain Carbon Steel Retain Austenite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. S. Castleman, B. L. Averbach, and M. Cohen: “Effect of Retained Austenite Upon Mechanical Properties,”Trans. ASM, 1952, vol. 44, p. 240.Google Scholar
  2. 2.
    P. Duval, G. Murry, and A. Constant: “Contribution à l’étude des facteurs métallurgiques affectant la stabilité dimensionnelle des aciers,”Rev. Metall., 1966, vol. 63, p. 707.Google Scholar
  3. 3.
    C. Kim: “X-ray Method of Measuring Retained Austenite in Heat Treated White Cast Irons,”J. Heat Treat., ASM, 1979, vol. 1, no. 2, p. 43.CrossRefGoogle Scholar
  4. 4.
    R. L. Banerjee: “Evolution de l’austenite résiduelle au cours du revenu,”Traitement Thermique, 1980, vol. 147, p. 39.Google Scholar
  5. 5.
    R. L. Banerjee: “X-ray Determination of Retained Austenite,”J. Heat Treat., ASM, 1981, vol. 2, no. 2, p. 147.CrossRefGoogle Scholar
  6. 6.
    R. L. Banerjee: “An X-ray Diffraction Study of the Low Temperature Transformation of Retained Austenite,”J. Heat Treat., ASM, 1983, vol. 3, no. 1, p. 48.CrossRefGoogle Scholar
  7. 7.
    S. G. Fletcher and M. Cohen: “The Dimensional Stability of Steel. Part I-Subatmospheric Transformation of Retained Austenite,”Trans. ASM, 1945, vol. 34, p. 216.Google Scholar
  8. 8.
    A. R. Troiano and A. B. Greninger: “The martensite transformation,”Met. Prog., 1946, vol. 50, p. 303.Google Scholar
  9. 9.
    J. H. Holloman, L. D. Jaffe, and D. C. Buffum: “Stabilization, Tempering and Relaxation in Austenite-Martensite Transformation,”J. Appl. Phys., 1947, vol. 18, p. 780.CrossRefGoogle Scholar
  10. 10.
    S. G. Fletcher, B. L. Averbach, and M. Cohen: “The Dimensional Stability of Steel. Part II-Further Experiments in Subatmospheric Transformations,”Trans. ASM, 1948, vol. 40, p. 703.Google Scholar
  11. 11.
    K. R. Kinsman and J. C. Shyne: “Thermal Stabilization of Austenite in Iron-Nickel-Carbon Alloys,”Acta Met., 1967, vol. 15, p. 1527.CrossRefGoogle Scholar
  12. 12.
    G. Liebmann.Zeit, fur Wirtschaftliche Fertigung, 1966, vol. 61, p. 235. (Quoted by K. E. Thelning in “Steel and its Heat Treatment,” 2nd Edition, 1984, Butterworths, London.)Google Scholar
  13. 13.
    B. L. Averbach and M. Cohen: “X-ray Determination of Retained Austenite by Integrated Intensities,”Trans. AIME, 1948, vol. 176, p. 401.Google Scholar

Copyright information

© American Society for Metals 1984

Authors and Affiliations

  • R. L. Banerjee
    • 1
  1. 1.Département de physiqueUniversité de MonctonMonctonCanada

Personalised recommendations