Advertisement

Pramana

, Volume 51, Issue 6, pp 733–742 | Cite as

Vertex function and coupling constant for the virtual decay of7Li

  • V. K. Sharma
Article

Abstract

The alpha-triton relative wave function with various nucleon exchange contributions and their asymptotic normalization are considered in the framework of the generator coordinate method (GCM). The asymptotic normalization of relative wave function provide the estimate of the coupling constant. The relative wave function is also used to obtain7Li-α-t vertex function in the virtual decay of7Li. The extrapolation of vertex function for negative values ofq 2 up to the alpha-triton pole provide the vertex constant, which is compared with the experimentally determined estimates 0.67 FM and 0.72 FM. Our calculated value is 0.656 FM which is in close agreement with the above estimates.

Keywords

Alpha-triton relative wave function generator coordinate method asymptotic normalization 

PACS No.

25.10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M P Locher and T Mizutani,Phys. Rep. C46, 43 (1978)CrossRefADSMathSciNetGoogle Scholar
  2. [2]
    M P Bomand, G R Plattner, R D Viollier and K Alder,Nucl. Phys. A294, 492 (1978)ADSGoogle Scholar
  3. [3]
    G R Plattner, M P Bornand and R D Viollier,Phys. Rev. Lett. 39, 127 (1977)CrossRefADSGoogle Scholar
  4. [4]
    S Dubnicka and O Dumbrajs,Phys. Rep. C19, 141 (1975)CrossRefADSGoogle Scholar
  5. [5]
    R G Lovas, A T Kruppa, R Beck and F Dickmann,Nucl. Phys. A474, 451 (1987)ADSGoogle Scholar
  6. [6]
    L D Blokhintsev, V L Kukulin, A A Sakharuk, D A Savin, E V Kuznetsova,Phys. Rev. C48, 2390 (1993)ADSGoogle Scholar
  7. [7]
    R Meieret al, Phys. Rev. C49, 320 (1994)ADSGoogle Scholar
  8. [8]
    V K Sharma and M A Nagarajan,J. Phys. G: Nucl. Phys. 10, 1703 (1984)CrossRefADSGoogle Scholar
  9. [9]
    E I Dolinski, A M Mukhamedshanov and R Yarmukhamodov,Bull. Acad. Sci. USSR; Phys. Ser. (USA)43, 140 (1979)Google Scholar
  10. [10]
    V K Sharma,Developments of nuclear cluster dynamics edited by Y Akaishi, K Kato, H Noto and S Okabe (Singapore, World Scientific, 1989) p. 50Google Scholar
  11. [11]
    A Ono, H Horiuchi, P Maruyama and A Ohnishi,Phys. Rev. Lett. 68, 2898;Prog. Theor. Phys. 87, 1185 (1992);Phys. Rev. C47, 2652 (1993)Google Scholar
  12. [12]
    A Ono, H Horiuchi and T Maruyama,Phys. Rev. C48, 2946 (1993)ADSGoogle Scholar
  13. [13]
    H Horiuchi and Y Kanada-En’yo,Nucl. Phys. A588, 121c (1995)ADSGoogle Scholar
  14. [14]
    D M Brink, InProc of Int. School of Physics, “Enrico Fermi” Course 36, edited by Bloch C. (New York, Academic Press, 1966) p. 247Google Scholar
  15. [15]
    V K Sharma, Physical Interpretation of Generator Coordinate Method, inV Int. Conf. on clustering aspects in nuclear and subuclear systems, Kyoto, Japan, July 28–29, 1988 contributed paper, p. 320Google Scholar
  16. [16]
    A Arima,Clustering aspects of nuclear structure, edited by J S Lilley and M A Nagarajan (Reidel D. Publishing Company, Holland, 1985) p. 394Google Scholar
  17. [17]
    L J B Goldfarb, J A Gonzales and A C Phillips,Nucl. Phys. A209, 77 (1973)ADSGoogle Scholar
  18. [18]
    H Horiuchi,Prog. Theor. Phys. 43, 375 (1970)CrossRefADSGoogle Scholar
  19. [19]
    M Abramowitz and I A Stegun,Handbook of mathematical functions (Dover, New York, 1965)Google Scholar
  20. [20]
    D F Hebbard and B A Robson,Nucl. Phys. 42, 563 (1963)MATHCrossRefGoogle Scholar

Copyright information

© Indian Academy of Sciences 1998

Authors and Affiliations

  • V. K. Sharma
    • 1
  1. 1.Department of Physics, Institute of Advanced StudiesUniversity of MeerutMeerutIndia

Personalised recommendations