Journal of Applied Mathematics and Computing

, Volume 22, Issue 3, pp 277–287 | Cite as

On algebras of Toeplitz fuzzy matrices

  • A. R. Meenakshi


In this paper, necessary and sufficient conditions are given for a product of Toeplitz fuzzy matrices to be Toeplitz. As an application, a criterion for normality of Toeplitz fuzzy matrices is derived and conditions are deduced for symmetric idempotency of Toeplitz fuzzy matrices. We discuss similar results for Hankel fuzzy matrices. Keywords: Fuzzy matrix, Toeplitz and Hankel matrices.

AMS Mathematics Subject Classification


Key words and phrases

Toeplitz fuzzy matrices Hankel fuzzy matrices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Brown and P. R. Halmos,Algebraic Properties of Toeplitz Operators, J. Reine Angew. Math.213 (1963/1964), 89–102.MATHMathSciNetGoogle Scholar
  2. 2.
    C. Gu and L. Patton,Commutation Relations for Toeplitz and Hankel Matrices, SIAM. J. Matrix Anal. Appl.24 (2003), 728–747.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    I. S. Iohvidov,Hankel and Toeplitz Matrices and Forms, Birkhauser Boston, Cambridge, MA. 1982.MATHGoogle Scholar
  4. 4.
    T. Ito,Every Normal Toeplitz Matrix is Either of Type I or of Type II, SIAM. J. Matrix Anal. Appl.17 (1996), 998–1006.MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Kailath and A. H. Sayed,Displacement Structure: Theory and Applications, SIAM. Rev.37 (1995), 297–386.MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    A. R. Meenakshi,On Regularity of Block Triangular Fuzzy Matrices, J. Appl. Math. & Computing (2004), 207–220.Google Scholar
  7. 7.
    C. K. Zhao,Inverses of L-Fuzzy Matrices, Fuzzy Sets and Systems,34 (1990), 103–116.MATHGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2006

Authors and Affiliations

  • A. R. Meenakshi
    • 1
  1. 1.Annamalai UniversityAnnamalainagarIndia

Personalised recommendations