Journal of Applied Mathematics and Computing

, Volume 22, Issue 3, pp 175–184 | Cite as

Weighted generalized inverses of partitioned matrices in Banachiewicz-Schur form

  • Dragana S. Cvetković
  • Bing Zheng


In this paper the conditions under which the weighted generalized inversesA (1,3M), A(1,4N), A M,N Dg andA d,W can be expressed in Banachiewicz-Schur form are considered and some interesting results are established. These results contribute to verify recent results obtained by J. K. Baksalary and G. P. Styan [2] and Y. Wei [15] and these extend their works.

AMS Mathematics Subject Classification


Key words and phrases

Banachiewicz-Schur form weighted Moore-Penrose inverse weighted Drazin inverse Schur complement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Ando,Generalized Schur complements, Linear Algebra Appl.27 (1979), 173–186.MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    J. K. Baksalary and G. P. H. Styan,Generalized inverses of partitioned matrices in Banachiewicz-Schur form, Linear Algebra Appl.354 (2002), 41–47.MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    T. Banachiewicz,Zur Berechnung der Determinanten, wie auch der Inversen und zur darauf basierten Auflosung der Systeme linearer Gleichungen, Acta Astronom. Ser. C3 (1937), 41–67.Google Scholar
  4. 4.
    D. Carlson, E. Haynsworth and T. Markham,A generalization of the Schur complement by means of the Moore-Penrose inverse, SIAM J. Appl. Math.26 (1974), 169–176.CrossRefMathSciNetGoogle Scholar
  5. 5.
    Chi-Kwong Li and Roy Mathias,Extremal Characterization of the Schur Complements and Resulting Inequalities, SIAM Rev.42 (2000), 233–246.CrossRefMathSciNetGoogle Scholar
  6. 6.
    D. J. Clements and H. K. Wimmer,Monotonicity of the Optimal Cost in the Discrete-time Regulator Problem and Schur Complements, Automatica37 (2001), 1779–1786.MATHCrossRefGoogle Scholar
  7. 7.
    G. Corach, A. Maestripieri and D. Stojanoff,Oblique projections and Schur complements, Acta Sci. Math. (Szeged)67 (2001), 439–459.MathSciNetGoogle Scholar
  8. 8.
    D. S. Cvetković, D.S.Djordjević and V. Rakočević,Schur complement in C*—algebras, Mathematische Nachrichten, (to appear).Google Scholar
  9. 9.
    Dragan S. Djordjević,Unified approach to the reverse order rule for generalized inverses, Acta Sci. Math. (Szeged)67 (2001), 761–776.MathSciNetGoogle Scholar
  10. 10.
    E. V. Haynsworth,Determination of the inertia of a partitioned Hermitian matrix, Linear Algebra Appl.1 (1968), 73–81MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    G. Marsaglia and G. P. H. Styan,Rank conditions for generalized inverses of partitioned matrices, Sankhya Ser. A36 (1974), 437–442.MATHMathSciNetGoogle Scholar
  12. 12.
    D. V. Quellette,Schur complements and statistics, Linear Algebra Appl.36 (1981), 187–295CrossRefMathSciNetGoogle Scholar
  13. 13.
    V. Rakocevic and Y. Wei,The representation and approximation of the W-weighted Drazin inverse of linear operators in hilbert space, Appl. Math. Comput.141 (2003), 455–470MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    I. Schur,Uber Potenzreihen die im Innerr des Einheitskreises sind, R J. Reine Argew. Math.147 (1917), 205–234.Google Scholar
  15. 15.
    Y. Wei,Expressions for the Drazin inverse of a 2×2Block Matrix, Linear and Multilinear Algebra45 (1998), 131–146.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2006

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesUniversity of NisNisSerbia
  2. 2.Department of MathematicsLanzhou UniversityLanzhouP. R. China

Personalised recommendations