Advertisement

A new mixed finite element method for Burgers’ equation

  • Ambit kumar Pany
  • Neela Nataraj
  • Sangita Singh
Article

Abstract

In this paper, anH 1-Galerkin mixed finite element method is used to approximate the solution as well as the flux of Burgers’ equation. Error estimates have been derived. The results of the numerical experiment show the efficacy of the mixed method and justifies the theoretical results obtained in the paper.

AMS Mathematics Subject Classification

65M60 65M15 65M12 

Key words and phrases

Burgers’ equation H1-Galerkin mixed method finite element error estimates computer implementation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Arul Veda Manickam, Kannan K. Moudgalya and A. K. Pani,Higher order fully discrete scheme combined with H 1-Galerkin mixed finite element method for semilinear reactiondiffusion equations, J. Appl. Math. & Computing15(1–2) (2004), 1–28.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Bressan and A. Quarteroni,An implicit/explicit spectral method for Burgers’ equation, Calcolo,23 (1987), 265–284.CrossRefMathSciNetGoogle Scholar
  3. 3.
    J. M. Burgers,A Mathematical model illustrating the theory of turbulence, Advances in Applied Mechanics, Academic Press, New York,1 (1948) 171–199.Google Scholar
  4. 4.
    J. M. Burgers,Mathematical examples illustrating relations occuring in the theory of turbulent fluid motion, Trans. Roy. Neth. Acad. Sci. Amsterdam17 (1939), 1–53.MathSciNetGoogle Scholar
  5. 5.
    J. Cadwell, P. Wanless and A. E. Cook,A finite element approach to Burgers’ equation, Appl. Math. Modelling5 (1981), 189–193.CrossRefMathSciNetGoogle Scholar
  6. 6.
    S. L. Campbell, K. E. Brenan and L. R. Petzold,Numerical Solution of intial value problems in differential-algebraic equations, American Elsevier Science, New York, 1989.Google Scholar
  7. 7.
    H. Chen and Z. Jiang,A characteristics mixed finite element method for Burgers’ equation, J. Appl. Math. & Computing15(1–2) (2004), 29–51.MathSciNetGoogle Scholar
  8. 8.
    A. Dogan,A Galerkin finite element approach to Burgers’ equation, Appl. Math. Comp.157 (2004), 331–346.MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Douglas Jr., T. F. Dupont and M. F. Wheeler,H 1-Galerkin methods for the Laplace and heat equations, Mathematical Aspect of Finite Elements in Partial Differential Equations, C.de Boor, ed., Academic Press, New York, 1957, 383–415.Google Scholar
  10. 10.
    C. A. J. Fletcher,A comparison of finite element and finite difference solutions of the oneand twodimensional Burgers’ equation, J. Comp. Phy.51(1983), 159–188.MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. K. Pani,An H 1-Galerkin mixed finite element method for parabolic partial differential equations, Siam J. Numer. Anal.35(2) (1998), 712–727.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. K. Pani and R. S. Anderssen,Finite element methods for identification of parameters in parabolic problems, Inverse Problems in Partial Differential Equations, Proc. Centre for Mathematics and its Applications, Vol.31, A. K. Pani and R. S. Anderssen, eds., Australian National University, Canberra, 1992, 208–221.Google Scholar
  13. 13.
    V. Thomée and L. B. Wahlbin,On Galerkin methods in semilinear parabolic problems, Siam J. Numer. Anal.12 (1989), 376–389.Google Scholar
  14. 14.
    M. F. Wheeler,A priori L 2-error estimates for Galerkin approximations to parabolic differential equations, Siam. J. Num. Anal.10 (1973), 723–759.CrossRefMathSciNetGoogle Scholar

Copyright information

© Korean Society for Computational & Applied Mathematics and Korean SIGCAM 2007

Authors and Affiliations

  • Ambit kumar Pany
    • 1
  • Neela Nataraj
    • 1
  • Sangita Singh
    • 2
  1. 1.Department of MathematicsIIT BombayMumbaiIndia
  2. 2.Department of MathematicsIIT DelhiNew DelhiIndia

Personalised recommendations