Advertisement

ANNALI DELL'UNIVERSITA' DI FERRARA

, Volume 31, Issue 1, pp 11–22 | Cite as

SuccessioniM-regolari relativamente ad un sottoA-modulo

  • Silvia Tosi
Article

Riassunto

In questa nota si verificano i seguenti fatti:
  1. (a)

    sea1,…,an formano una successioneM-regolare relativemente adN, alloraa1,…,an formano una successioneMp-regolare relativamente aNp per ogni ideale primo p diA;

     
  2. (b)

    sea1,…,an formano unaM-successione allora formano una successioneInM-regolare relativamente aIn+1M, doveI=(at,…,an).

     

Si danno inoltre alcune proprietà riferite agli ideali sizigietici ed a due casi particolari della nozione precedente: le successioni regolari relative e le successioni regolari relative all'ideale da esse generato.

Summary

In this note the following facts occur:
  1. (a)

    ifa1,…,an form anM-regular sequence relatively toN, thena1,…,an form anMp-regular sequence relatively toNp for any prime ideal p ofA;

     
  2. (b)

    ifa1,…,an form anM-sequence, then they form anInM-regular sequence relatively toIn+1M, whereI=(a1,…,an).

     

Furthermore some properties concerning syzygetic ideals and some particular cases of the notion mentioned above are given: the relative regular sequences and the regular sequences relative to the ideal that they generate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliografia

  1. [1]
    M. Boyer,Contraction régulières en géométrie algébriques, Tesi 1975, Université de Montréal.Google Scholar
  2. [2]
    P. Bouchard,Suites régulières-homogènes et profondeur graduée, Ann. Sc. math. Québec, 1982, vol. VI.Google Scholar
  3. [3]
    M. Fiorentini,On relative regular sequences, J. of Algebra,18 (1971).Google Scholar
  4. [4]
    M. Fiorentini,Suites régulières relatives et suites régulières homogènes, Serie di conferenze tenute alla XVIII Session du Séminaire de Mathématique Supérieures de l'Université de Montréal (giugno 1979).Google Scholar
  5. [5]
    M. Fiorentini—A. Lascu,On the Homogeneous Ideal of a Quasi-Complete Intersection in the Projective Space, Ann. Univ. Ferrara—Sez. VII—Sc. Mat.,29 (1983).Google Scholar
  6. [6]
    J. Herzog—A. Simis—W. V. Vasconcelos,Approximation Complexes of Blowing-Up Ring, J. of Algebra,74 (1982).Google Scholar
  7. [7]
    C. Huneke,The Theory of d-Sequences and Powers of Ideals, Advances in Mathematics,46 (1982).Google Scholar
  8. [8]
    C. Huneke,The Koszul Homology of an Ideal, Preprint.Google Scholar
  9. [9]
    U. Orbanz—L. Robbiano,Projective normal flatness and Hilbert function, Transaction of American Mathematical Society,283 (1984).Google Scholar
  10. [10]
    J. P. Serre,Algèbre Locale, Multiplicités, Springer-Verlag Lecture Notes in Math., 1965.Google Scholar
  11. [11]
    S. Tosi,Metodi omologici in algebra commutativa, Tesi di laurea, Università degli Studi di Ferrara (1984).Google Scholar

Copyright information

© Università degli Studi di Ferrara 1985

Authors and Affiliations

  • Silvia Tosi
    • 1
  1. 1.Dipartimento di Matematica dell'UniversitàFerrara

Personalised recommendations