In Vitro

, Volume 16, Issue 2, pp 159–167 | Cite as

Comparison of collagen and glycosaminoglycan synthesis in attaching control and diabetic human skin fibroblasts

  • R. Edward Branson
  • Kenneth J. Lembach
  • Leon W. Cunningham


Cultured fibroblasts derived from normal subjects and juvenile diabetics attach in the absence of serum to plastic culture dishes and secrete macromolecules, including collagenous components, hyaluronic acid, and proteoglycans into the medium and onto the plastic surface where they form a microexudate carpet. Most diabetic fibroblasts examined did not spread as well as normal cells during a 4-hr interval after the initial attachment. There were no significant differences between normal and diabetic cells with respect to proline and lysine incorporation and lysine hydroxylation. The percentage glycosylation of hydroxylysine was marginally higher in the media proteins of diabetic cells, but glycosylation in both normal and diabetic cells was elevated over that typically observed in human skin collagen.

Collagenous components were estimated to constitute approximately 15–20% of the microexudate carpet fraction in both normal and diabetic cell strains. Diabetic fibroblasts exhibited a marginally lower ratio of heparan sulfate to chondroitin sulfate in the cell surface to matrix microexudate carpet fraction (trypsinate) than did normal fibroblasts. The hyaluronate and chondroitin sulfate contents of this fraction of diabetic cells were not significantly different from those of normal cells.


diabetes fibroblasts collagen glycosaminoglycans 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Spiro, R. G. 1976. Search for a biochemical basis of diabetic microangiopathy. Diabetologia 12: 1–14.PubMedCrossRefGoogle Scholar
  2. 2.
    Beisswenger, P. J., and R. G. Spiro. 1970. Human glomerular basement membrane: chemical alteration indiabetes mellitus. Science 168: 596–598.PubMedCrossRefGoogle Scholar
  3. 3.
    McMillian, D. E. 1975. Deterioration of the microcirculation in diabetes. Diabetes 24: 944–957.CrossRefGoogle Scholar
  4. 4.
    Siperstein, M. D. 1970. The relationship of carbohydrate derangements to the microangiopathy of diabetes. In: E. Cerasi and R. Luft (Eds.), Pathogenesis ofdiabetes mellitus. Nobel Symposium, Vol. 13. Wiley, New York, pp. 81–102.Google Scholar
  5. 5.
    Raskin, P., J. F. Marks, H. Burns, M. E. Plumer, and M. D. Siperstein. 1975. Capillary basement membrane width in diabetic children. Am. J. Med. 58: 365–372.PubMedCrossRefGoogle Scholar
  6. 6.
    Vracko, R., and E. P. Benditt. 1974. Manifestations ofdiabetes mellitus—their possible relationships to an underlying cell defect. Am. J. Pathol. 75: 204–221.PubMedGoogle Scholar
  7. 7.
    Vracko, R., and E. P. Benditt. 1975. Restricted replicative life-span of diabetic fibroblastsin vitro: its relation to microangiopathy. Fed. Proc. 34: 68–70.PubMedGoogle Scholar
  8. 8.
    Goldstein, S., J. W. Littlefield, and J. S. Soeldner. 1969.Diabetes mellitus and aging: diminished plating efficiency of cultured human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 64: 155–160.PubMedCrossRefGoogle Scholar
  9. 9.
    Goldstein, S., E. J. Moerman, J. S. Soeldner, R. E. Gleason, and D. M. Barnett. 1978. Chronologic and physiologic age affect replicative life-span of fibroblasts from diabetic, prediabetic and normal donors. Science 199: 781–782.PubMedCrossRefGoogle Scholar
  10. 10.
    Goldstein, S., S. Niewiarowski, and D. P. Singal. 1975. Pathological implications of cell agingin vitro. Fed. Proc. 34: 56–63.PubMedGoogle Scholar
  11. 11.
    Martin, G. M., C. A. Sprague, and C. J. Epstein. 1970. Replicative life-span of cultivated human cells: effects of donor's age, tissue and genotype. Lab. Invest. 23: 86–92.PubMedGoogle Scholar
  12. 12.
    Vracko, R. 1974. Basal lamina layering indiabetes mellitus. Evidence for accelerated rate of cell death and cell regeneration. Diabetes 23: 94–104.PubMedGoogle Scholar
  13. 13.
    Mellan, W. J., and V. J. Cristofalo. 1972. Human diploid cell cultures: their usefulness in the study of genetic variations in metabolism. In: G. H. Rothblat and V. J. Cristofalo (Eds.),Growth Nutrition and Metabolism of Cells in Culture. Academic Press, New York. Vol. 1, pp. 327–369.Google Scholar
  14. 14.
    Lembach, K. J., R. E. Branson, P. B. Hewgley, and L. W. Cunningham. 1977. The synthesis of macromolecular 3-hydroxyproline by attaching and confluent cultures of human fibroblasts. Eur. J. Biochem. 72: 379–383.PubMedCrossRefGoogle Scholar
  15. 15.
    Schwartz, C. E., C. G. Hellerqvist, and L. W. Cunningham. 1978. A collagenous component of the microexudate carpet secreted by attaching human fibroblasts. Ann. N.Y. Acad. Sci. 312: 450–452.PubMedCrossRefGoogle Scholar
  16. 16.
    Vaheri, A., K. Alitalo, K. Hedmon, J. Kesic-Oja, M. Kurkinen, and J. Wartiovaara. 1978. Fibronectin and the pericellular matrix of normal and transformed adherent cells. Ann. N.Y. Acad. Sci. 312: 343–353.PubMedCrossRefGoogle Scholar
  17. 17.
    Kraemer, P. M. 1971. Heparan sulfates of cultured cells I. Membrane associated and cell-sap species in Chinese hamster cells. Biochemistry 10: 1437–1445.PubMedCrossRefGoogle Scholar
  18. 18.
    Bornstein, P., and K. A. Piez. 1964. A biochemical study of human skin collagen and the relation between intra- and intermolecular cross-linking. J. Clin. Invest. 43: 1813–1823.PubMedCrossRefGoogle Scholar
  19. 19.
    Schneider, E. L., E. J. Stanbridge, and C. J. Epstein. 1974. Incorporation of3H-uridine and3H-uracil into RNA. A simple technique for the detection of mycoplasma contamination of cultured cells. Exp. Cell Res. 84: 311–318.PubMedCrossRefGoogle Scholar
  20. 20.
    Askenasi, R. S., and N. A. Kefalides. 1972. Simple chromatographic method for determination of14C-labeled lysine, hydroxylysine, and hydroxylysine glycosides. Anal. Biochem. 47: 67–72.PubMedCrossRefGoogle Scholar
  21. 21.
    Lembach, K. J. 1976. Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor. J. Cell. Physiol. 89: 277–288.PubMedCrossRefGoogle Scholar
  22. 22.
    Terry, A. H., and L. A. Culp. 1974. Substrate attached glycoproteins from normal and virus-transformed cells. Biochemistry 13: 414–425.PubMedCrossRefGoogle Scholar
  23. 23.
    Saito, H., T. Yamagata, and S. Suzuki. 1968. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J. Biol. Chem. 243: 1536–1542.PubMedGoogle Scholar
  24. 24.
    Bitter, T., and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330–334.PubMedCrossRefGoogle Scholar
  25. 25.
    King, J., and V. K. Laemmli. 1971. Polypeptides of the tail fibers of bacteriophage T4. J. Mol. Biol. 62: 465–477.PubMedCrossRefGoogle Scholar
  26. 26.
    Maizel, J. V. 1971. Polyacrylamide gel electrophoresis of viral proteins. In: K. Maramorosch and H. Koprowski (Eds.), Methods in Virology. Vol. 5. Academic Press, New York, pp. 179–246.Google Scholar
  27. 27.
    Peterkofsky, B., and R. Diegelmann. 1971. Use of a mixture of proteinase-free collagenase for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry 10: 988–994.PubMedCrossRefGoogle Scholar
  28. 28.
    Igarashi, Y., and Y. Yaoi. 1975. Growth-enhancing protein obtained from cell surface of cultured fibroblasts. Nature 254: 248–250.PubMedCrossRefGoogle Scholar
  29. 29.
    Smith, B. D., P. H. Byers, and G. R. Martin. 1972. Production of procollagen by human fibroblasts in culture. Proc. Natl. Acad. Sci. U.S.A. 69: 3260–3262.PubMedCrossRefGoogle Scholar
  30. 30.
    Church, R. L., and M. L. Tanzer. 1975. Isolation and amino acid composition of human procollagen [Pro α1(I)]2 Pro α2 from skin fibroblasts in culture. FEBS Letters 53: 105–109.PubMedCrossRefGoogle Scholar
  31. 31.
    Miller, E. J. 1972. Structural studies on cartilage collagen employing limited cleavage and solubilization with pepsin. Biochemistry 11: 4903–4909.PubMedCrossRefGoogle Scholar
  32. 32.
    Kohn, R. R., and S. Hensse. 1977. Abnormal collagen in cultures of fibroblasts from human beings withdiabetes mellitus. Biochem. Biophys. Res. Commun. 76: 765–771.CrossRefGoogle Scholar
  33. 33.
    Fessler, L. I., N. P. Morris, and J. H. Fessler. 1975. Procollagen: biological scission of amino acid carboxyl extension peptides. Proc. Natl. Acad. Sci. U.S.A. 72: 4905–4909.PubMedCrossRefGoogle Scholar

Copyright information

© Tissue Culture Association 1980

Authors and Affiliations

  • R. Edward Branson
    • 1
  • Kenneth J. Lembach
    • 1
  • Leon W. Cunningham
    • 1
  1. 1.Department of BiochemistryVanderbilt University School of MedicineNashville

Personalised recommendations