Skip to main content
Log in

Comparison of collagen and glycosaminoglycan synthesis in attaching control and diabetic human skin fibroblasts

  • Published:
In Vitro Aims and scope Submit manuscript

Summary

Cultured fibroblasts derived from normal subjects and juvenile diabetics attach in the absence of serum to plastic culture dishes and secrete macromolecules, including collagenous components, hyaluronic acid, and proteoglycans into the medium and onto the plastic surface where they form a microexudate carpet. Most diabetic fibroblasts examined did not spread as well as normal cells during a 4-hr interval after the initial attachment. There were no significant differences between normal and diabetic cells with respect to proline and lysine incorporation and lysine hydroxylation. The percentage glycosylation of hydroxylysine was marginally higher in the media proteins of diabetic cells, but glycosylation in both normal and diabetic cells was elevated over that typically observed in human skin collagen.

Collagenous components were estimated to constitute approximately 15–20% of the microexudate carpet fraction in both normal and diabetic cell strains. Diabetic fibroblasts exhibited a marginally lower ratio of heparan sulfate to chondroitin sulfate in the cell surface to matrix microexudate carpet fraction (trypsinate) than did normal fibroblasts. The hyaluronate and chondroitin sulfate contents of this fraction of diabetic cells were not significantly different from those of normal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Spiro, R. G. 1976. Search for a biochemical basis of diabetic microangiopathy. Diabetologia 12: 1–14.

    Article  PubMed  CAS  Google Scholar 

  2. Beisswenger, P. J., and R. G. Spiro. 1970. Human glomerular basement membrane: chemical alteration indiabetes mellitus. Science 168: 596–598.

    Article  PubMed  CAS  Google Scholar 

  3. McMillian, D. E. 1975. Deterioration of the microcirculation in diabetes. Diabetes 24: 944–957.

    Article  Google Scholar 

  4. Siperstein, M. D. 1970. The relationship of carbohydrate derangements to the microangiopathy of diabetes. In: E. Cerasi and R. Luft (Eds.), Pathogenesis ofdiabetes mellitus. Nobel Symposium, Vol. 13. Wiley, New York, pp. 81–102.

    Google Scholar 

  5. Raskin, P., J. F. Marks, H. Burns, M. E. Plumer, and M. D. Siperstein. 1975. Capillary basement membrane width in diabetic children. Am. J. Med. 58: 365–372.

    Article  PubMed  CAS  Google Scholar 

  6. Vracko, R., and E. P. Benditt. 1974. Manifestations ofdiabetes mellitus—their possible relationships to an underlying cell defect. Am. J. Pathol. 75: 204–221.

    PubMed  CAS  Google Scholar 

  7. Vracko, R., and E. P. Benditt. 1975. Restricted replicative life-span of diabetic fibroblastsin vitro: its relation to microangiopathy. Fed. Proc. 34: 68–70.

    PubMed  CAS  Google Scholar 

  8. Goldstein, S., J. W. Littlefield, and J. S. Soeldner. 1969.Diabetes mellitus and aging: diminished plating efficiency of cultured human fibroblasts. Proc. Natl. Acad. Sci. U.S.A. 64: 155–160.

    Article  PubMed  CAS  Google Scholar 

  9. Goldstein, S., E. J. Moerman, J. S. Soeldner, R. E. Gleason, and D. M. Barnett. 1978. Chronologic and physiologic age affect replicative life-span of fibroblasts from diabetic, prediabetic and normal donors. Science 199: 781–782.

    Article  PubMed  CAS  Google Scholar 

  10. Goldstein, S., S. Niewiarowski, and D. P. Singal. 1975. Pathological implications of cell agingin vitro. Fed. Proc. 34: 56–63.

    PubMed  CAS  Google Scholar 

  11. Martin, G. M., C. A. Sprague, and C. J. Epstein. 1970. Replicative life-span of cultivated human cells: effects of donor's age, tissue and genotype. Lab. Invest. 23: 86–92.

    PubMed  CAS  Google Scholar 

  12. Vracko, R. 1974. Basal lamina layering indiabetes mellitus. Evidence for accelerated rate of cell death and cell regeneration. Diabetes 23: 94–104.

    PubMed  CAS  Google Scholar 

  13. Mellan, W. J., and V. J. Cristofalo. 1972. Human diploid cell cultures: their usefulness in the study of genetic variations in metabolism. In: G. H. Rothblat and V. J. Cristofalo (Eds.),Growth Nutrition and Metabolism of Cells in Culture. Academic Press, New York. Vol. 1, pp. 327–369.

    Google Scholar 

  14. Lembach, K. J., R. E. Branson, P. B. Hewgley, and L. W. Cunningham. 1977. The synthesis of macromolecular 3-hydroxyproline by attaching and confluent cultures of human fibroblasts. Eur. J. Biochem. 72: 379–383.

    Article  PubMed  CAS  Google Scholar 

  15. Schwartz, C. E., C. G. Hellerqvist, and L. W. Cunningham. 1978. A collagenous component of the microexudate carpet secreted by attaching human fibroblasts. Ann. N.Y. Acad. Sci. 312: 450–452.

    Article  PubMed  CAS  Google Scholar 

  16. Vaheri, A., K. Alitalo, K. Hedmon, J. Kesic-Oja, M. Kurkinen, and J. Wartiovaara. 1978. Fibronectin and the pericellular matrix of normal and transformed adherent cells. Ann. N.Y. Acad. Sci. 312: 343–353.

    Article  PubMed  CAS  Google Scholar 

  17. Kraemer, P. M. 1971. Heparan sulfates of cultured cells I. Membrane associated and cell-sap species in Chinese hamster cells. Biochemistry 10: 1437–1445.

    Article  PubMed  CAS  Google Scholar 

  18. Bornstein, P., and K. A. Piez. 1964. A biochemical study of human skin collagen and the relation between intra- and intermolecular cross-linking. J. Clin. Invest. 43: 1813–1823.

    Article  PubMed  CAS  Google Scholar 

  19. Schneider, E. L., E. J. Stanbridge, and C. J. Epstein. 1974. Incorporation of3H-uridine and3H-uracil into RNA. A simple technique for the detection of mycoplasma contamination of cultured cells. Exp. Cell Res. 84: 311–318.

    Article  PubMed  CAS  Google Scholar 

  20. Askenasi, R. S., and N. A. Kefalides. 1972. Simple chromatographic method for determination of14C-labeled lysine, hydroxylysine, and hydroxylysine glycosides. Anal. Biochem. 47: 67–72.

    Article  PubMed  CAS  Google Scholar 

  21. Lembach, K. J. 1976. Enhanced synthesis and extracellular accumulation of hyaluronic acid during stimulation of quiescent human fibroblasts by mouse epidermal growth factor. J. Cell. Physiol. 89: 277–288.

    Article  PubMed  CAS  Google Scholar 

  22. Terry, A. H., and L. A. Culp. 1974. Substrate attached glycoproteins from normal and virus-transformed cells. Biochemistry 13: 414–425.

    Article  PubMed  CAS  Google Scholar 

  23. Saito, H., T. Yamagata, and S. Suzuki. 1968. Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates. J. Biol. Chem. 243: 1536–1542.

    PubMed  CAS  Google Scholar 

  24. Bitter, T., and H. M. Muir. 1962. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330–334.

    Article  PubMed  CAS  Google Scholar 

  25. King, J., and V. K. Laemmli. 1971. Polypeptides of the tail fibers of bacteriophage T4. J. Mol. Biol. 62: 465–477.

    Article  PubMed  CAS  Google Scholar 

  26. Maizel, J. V. 1971. Polyacrylamide gel electrophoresis of viral proteins. In: K. Maramorosch and H. Koprowski (Eds.), Methods in Virology. Vol. 5. Academic Press, New York, pp. 179–246.

    Google Scholar 

  27. Peterkofsky, B., and R. Diegelmann. 1971. Use of a mixture of proteinase-free collagenase for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry 10: 988–994.

    Article  PubMed  CAS  Google Scholar 

  28. Igarashi, Y., and Y. Yaoi. 1975. Growth-enhancing protein obtained from cell surface of cultured fibroblasts. Nature 254: 248–250.

    Article  PubMed  CAS  Google Scholar 

  29. Smith, B. D., P. H. Byers, and G. R. Martin. 1972. Production of procollagen by human fibroblasts in culture. Proc. Natl. Acad. Sci. U.S.A. 69: 3260–3262.

    Article  PubMed  CAS  Google Scholar 

  30. Church, R. L., and M. L. Tanzer. 1975. Isolation and amino acid composition of human procollagen [Pro α1(I)]2 Pro α2 from skin fibroblasts in culture. FEBS Letters 53: 105–109.

    Article  PubMed  CAS  Google Scholar 

  31. Miller, E. J. 1972. Structural studies on cartilage collagen employing limited cleavage and solubilization with pepsin. Biochemistry 11: 4903–4909.

    Article  PubMed  CAS  Google Scholar 

  32. Kohn, R. R., and S. Hensse. 1977. Abnormal collagen in cultures of fibroblasts from human beings withdiabetes mellitus. Biochem. Biophys. Res. Commun. 76: 765–771.

    Article  CAS  Google Scholar 

  33. Fessler, L. I., N. P. Morris, and J. H. Fessler. 1975. Procollagen: biological scission of amino acid carboxyl extension peptides. Proc. Natl. Acad. Sci. U.S.A. 72: 4905–4909.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by Grants AM 11821 and AM 19606 from the National Institutes of Health, United States Public Health Service, by a grant from the American Diabetes Association (Leon W. Cunningham, Principal Investigator) and by the Vanderbilt Diabetes Endocrinology Center grant, AM 17026. R. E. Branson was the recipient of a research fellowship of the Juvenile Diabetes Foundation and of a National Institutes of Health Postdoctoral Fellowship AM 05636.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Branson, R.E., Lembach, K.J. & Cunningham, L.W. Comparison of collagen and glycosaminoglycan synthesis in attaching control and diabetic human skin fibroblasts. In Vitro 16, 159–167 (1980). https://doi.org/10.1007/BF02831506

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02831506

Keywords

Navigation