Advertisement

KSCE Journal of Civil Engineering

, Volume 3, Issue 4, pp 339–348 | Cite as

Theoretical considerations of post-buckling analyses of unsymmetric thin-walled space frames

  • Moon-Young Kim
  • Sung-Pil Chang
  • Sung-Bo Kim
Article
  • 120 Downloads

Abstract

The theoretical considerations of the post-buckling analyses of thin-walled space frames with non-symmetric cross sections are presented based on the semitangential rotation and semitangential moment. The nature of the Rodriguez's rotations and semitangential rotations are discusssed, and the improved displacement field is introduced based on the second order terms of semitangential rotations. By defining all the displacement parameters at the centroid and introducing the normalized warping functions defined at the centroid and the shear center, respectively, the elastic strain energy including bending-torsion coupled terms due to the non-symmetry of cross-section is clearly derived. Also, the total potential energy consistently derived, without unreasonable assumption, based on semitangential rotations corresponds to semitangential bending and torsional moments. It is proved that the conventional potential energy due to stress resultants corresponds to the quasitangential internal bending and torsional moments, and the potential energy considering the effects of the second order terms of semitangential rotations includes the energy terms transforming quasitangential moments to semitangential moments.

Keywords

thin-walled space frame post-buckling semitangential rotation semitangential moment nonsymmetric section 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyris, J. H., Dunne, P C. and Scharpf, D. W. (1978a) “On large displacement-small strain analysis of structures with rotational degrees of freedom.”Comp. Methods in Appl. Mech. and Engrg. 14, pp. 401–451.CrossRefMATHGoogle Scholar
  2. 2.
    Argyris, J. H., Dunne, P. C. and Scharpf, D. W. (1978b) “On large displacement-small strain analysis of structures with rotational degrees of freedom.”Comp. Methods in Appl. Mech. and Engrg., 15, pp. 99–135.MATHCrossRefGoogle Scholar
  3. 3.
    Argyris, J. H., Hilpert, O., Malejannakis, G. A., and Scharpf, D. W. (1979). “On the geometrical stiffness of a beam in space-a consistent v. w. appraoch.”Comp. Methods in Appl. Mech. and Engrg., 20, pp. 105–131.MATHCrossRefGoogle Scholar
  4. 4.
    Bathe, K. J. (1996).Finite element procedures, Prentice-Hall, New Jersey.Google Scholar
  5. 5.
    Chen, W. F and Atsuta, T (1977).Theory of beam-columns Vol 2: space behavior and design. McGraw-Hill, New York.Google Scholar
  6. 6.
    Chen, H. and Blandford, G. E. (1991a). “Thin-walled space frames. I: Large deformation analysis theory.”J. Struct. Engrg., ASCE, 117(8), pp. 2499–2520.CrossRefGoogle Scholar
  7. 7.
    Chen, H. and Blandford, G. E. (1991b) “Thin-walled space frames. II: Algorithmic details and applications.”J. Struct. Engrg., ASCE, 117(8), pp. 2521–2539.CrossRefGoogle Scholar
  8. 8.
    Conci, A. and Gattas, M. (1990). “Natural approach for geometric non-linear analysis of thin-walled frames.”Int. J. Numer. Methods Engrg., 30, pp. 207–231.MATHCrossRefGoogle Scholar
  9. 9.
    Kim, S. B. and Kim, M. Y. (1999). “Improved formulation for spatial stability and free vibration of thin-walled tapered beams and space frames.”Engng. Struct., 22(5), pp. 446–458.CrossRefGoogle Scholar
  10. 10.
    Kim, M. Y., Chang, S. P. and Kim, S. B. (1996). “Spatial stability analysis of thin-walled space frames.”Int. J. Numer. Methods Engrg., 39, pp. 499–525.CrossRefGoogle Scholar
  11. 11.
    Kim, S. B., Kim, M. Y. and Chang, S. P. (1999). “F. E. applications of post-buckling analyses of unsymmetric thin-walled space frames.”J. Civil Engineering, KSCE, (to be submitted).Google Scholar
  12. 12.
    Kouhia, R. and Tuomala, M. (1993). “Static and dynamic analysis of space frames using simple Timoshenko type element.”Int. J. Numer. Methods Engrg., 33, pp. 1189–1221.CrossRefGoogle Scholar
  13. 13.
    Kuo, S. R., Yang, Y. B., and Chou, J. H. (1993) “Nonlinear analysis of space frames with finite rotations.”,J. Struct. Engrg., ASCE, 119(1), pp. 1–15.CrossRefGoogle Scholar
  14. 14.
    Timoshenko, S. P. and Gere, J. M. (1961).Theory of elastic stability, 2nd ed., McGraw-Hill, New York.Google Scholar
  15. 15.
    Yang, Y. B. and McGuire, W. (1986). “Joint rotations and geometric nonlinear analysis.”J. Struct. Eng. ASCE, 112, pp. 879–905.CrossRefGoogle Scholar
  16. 16.
    Yang, Y. B. and Kuo, S. R. (1992). “Frame bucklingGoogle Scholar

Copyright information

© KSCE and Springer jointly 1999

Authors and Affiliations

  • Moon-Young Kim
    • 1
  • Sung-Pil Chang
    • 2
  • Sung-Bo Kim
    • 3
  1. 1.Department of Civil EngineeringSungkyunkwan UniversityJangan-Ku, SuwonKorea
  2. 2.Department of Civil EngineeringSeoul National UniversitySeoulKorea
  3. 3.Department of Civil EngineeringChungbuk National UniversityCheongjuKorea

Personalised recommendations